Aims. Osteochondral lesions of the talus (OLT) are a common cause of disability and chronic ankle pain. Many operative treatment strategies have been introduced; however, they have their own disadvantages. Recently lesion repair using autologous cartilage chip has emerged therefore we investigated the efficacy of particulated autologous
The aim of this retrospective study was to determine if there are differences in short-term clinical outcomes among four different types of matrix-associated autologous chondrocyte transplantation (MACT). A total of 88 patients (mean age 34 years (SD 10.03), mean BMI 25 kg/m2 (SD 3.51)) with full-thickness chondral lesions of the tibiofemoral joint who underwent MACT were included in this study. Clinical examinations were performed preoperatively and 24 months after transplantation. Clinical outcomes were evaluated using the International Knee Documentation Committee (IKDC) Subjective Knee Form, the Brittberg score, the Tegner Activity Scale, and the visual analogue scale (VAS) for pain. The Kruskal-Wallis test by ranks was used to compare the clinical scores of the different transplant types.Aims
Methods
The management of failed autologous chondrocyte
implantation (ACI) and matrix-assisted autologous chondrocyte implantation
(MACI) for the treatment of symptomatic osteochondral defects in
the knee represents a major challenge. Patients are young, active
and usually unsuitable for prosthetic replacement. This study reports
the results in patients who underwent revision cartilage transplantation
of their original ACI/MACI graft for clinical or graft-related failure.
We assessed 22 patients (12 men and 10 women) with a mean age of
37.4 years (18 to 48) at a mean of 5.4 years (1.3 to 10.9). The
mean period between primary and revision grafting was 46.1 months
(7 to 89). The mean defect size was 446.6 mm2 (150 to
875) and they were located on 11 medial and two lateral femoral condyles,
eight patellae and one trochlea. The mean modified Cincinnati knee score improved from 40.5 (16
to 77) pre-operatively to 64.9 (8 to 94) at their most recent review
(p <
0.001). The visual analogue pain score improved from 6.1
(3 to 9) to 4.7 (0 to 10) (p = 0.042). A total of 14 patients (63%)
reported an ‘excellent’ (n = 6) or ‘good’ (n = 8) clinical outcome,
5 ‘fair’ and one ‘poor’ outcome. Two patients underwent patellofemoral
joint replacement. This study demonstrates that revision cartilage
transplantation after primary ACI and MACI can yield acceptable
functional results and continue to preserve the joint. Cite this article:
Matrix-induced autologous chondrocyte implantation
(MACI) is an established technique used to treat osteochondral lesions
in the knee. For larger osteochondral lesions (>
5 cm2)
deeper than approximately 8 mm we have combined the use of two MACI
membranes with impaction grafting of the subchondral bone. We report
our results of 14 patients who underwent the ‘bilayer collagen membrane’
technique (BCMT) with a mean follow-up of 5.2 years (2 to 8). There
were 12 men and two women with a mean age of 23.6 years (16 to 40).
The mean size of the defect was 7.2 cm2 (5.2 to 12 cm2)
and were located on the medial (ten) or lateral (four) femoral condyles.
The mean modified Cincinnati knee score improved from 45.1 (22 to
70) pre-operatively to 82.8 (34 to 98) at the most recent review
(p <
0.05). The visual analogue pain score improved from 7.3
(4 to 10) to 1.7 (0 to 6) (p <
0.05). Twelve patients were considered
to have a good or excellent clinical outcome. One graft failed at
six years. The BCMT resulted in excellent functional results and durable
repair of large and deep osteochondral lesions without a high incidence
of graft-related complications.
Orthopaedic surgery is in an exciting transitional period as modern surgical interventions, implants and scientific developments are providing new therapeutic options. As advances in basic science and technology improve our understanding of the pathology and repair of musculoskeletal tissue, traditional operations may be replaced by newer, less invasive procedures which are more appropriately targeted at the underlying pathophysiology. However, evidence-based practice will remain a basic requirement of care. Orthopaedic surgeons can and should remain at the forefront of the development of novel therapeutic interventions and their application. Progression of the potential of bench research into an improved array of orthopaedic treatments in an effective yet safe manner will require the development of a subgroup of specialists with extended training in research to play an important role in bridging the gap between laboratory science and clinical practice. International regulations regarding the introduction of new biological treatments will place an additional burden on the mechanisms of this translational process, and orthopaedic surgeons who are trained in science, surgery and the regulatory environment will be essential. Training and supporting individuals with these skills requires special consideration and discussion by the orthopaedic community. In this paper we review some traditional approaches to the integration of orthopaedic science and surgery, the therapeutic potential of current regenerative biomedical science for cartilage repair and ways in which we may develop surgeons with the skills required to translate scientific discovery into effective and properly assessed orthopaedic treatments.
Human articular cartilage samples were retrieved from the resected material of patients undergoing total knee replacement. Samples underwent automated controlled freezing at various stages of preparation: as intact articular cartilage discs, as minced articular cartilage, and as chondrocytes immediately after enzymatic isolation from fresh articular cartilage. Cell viability was examined using a LIVE/DEAD assay which provided fluorescent staining. Isolated chondrocytes were then cultured and Alamar blue assay was used for estimation of cell proliferation at days zero, four, seven, 14, 21 and 28 after seeding. The mean percentage viabilities of chondrocytes isolated from group A (fresh, intact articular cartilage disc samples), group B (following cryopreservation and then thawing, after initial isolation from articular cartilage), group C (from minced cryopreserved articular cartilage samples), and group D (from cryopreserved intact articular cartilage disc samples) were 74.7% (95% confidence interval (CI) 73.1 to 76.3), 47.0% (95% CI 43 to 51), 32.0% (95% CI 30.3 to 33.7) and 23.3% (95% CI 22.1 to 24.5), respectively. Isolated chondrocytes from all groups were expanded by the following mean proportions after 28 days of culturing: group A ten times, group B 18 times, group C 106 times, and group D 154 times. This experiment demonstrated that it is possible to isolate viable chondrocytes from cryopreserved intact human articular cartilage which can then be successfully cultured.
This prospective study used magnetic resonance imaging to record sagittal plane tibiofemoral kinematics before and after anterior cruciate ligament reconstruction using autologous hamstring graft. Twenty patients with anterior cruciate ligament injuries, performed a closed-chain leg-press while relaxed and against a 150 N load. The tibiofemoral contact patterns between 0° to 90° of knee flexion were recorded by magnetic resonance scans. All measurements were performed pre-operatively and repeated at 12 weeks and two years. Following reconstruction there was a mean passive anterior laxity of 2.1 mm (
The purpose of this study was to examine the effects of hyaluronic acid supplementation on chondrocyte metabolism Bovine articular chondrocytes were isolated and seeded into alginate constructs. These were cultured in medium containing hyaluronic acid at varying concentrations. Samples were assayed for biochemical and histological changes. There was a dose-dependent response to the exposure of hyaluronic acid to bovine articular chondrocytes