Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate prediction of deformity progression. This, in turn, would prompt imaging and therapeutic intervention at the appropriate time, thereby achieving the best clinical outcome for this group of patients. Cite this article:
Aims. The aim of this study was to prepare a scoping review to investigate the use of
A modular femoral head–neck junction has practical
advantages in total hip replacement. Taper fretting and corrosion
have so far been an infrequent cause of revision. The role of design
and manufacturing variables continues to be debated. Over the past
decade several changes in technology and clinical practice might
result in an increase in clinically significant taper fretting and
corrosion. Those factors include an increased usage of large diameter
(36 mm) heads, reduced femoral neck and taper dimensions, greater
variability in taper assembly with smaller incision surgery, and
higher taper stresses due to increased patient weight and/or physical
activity. Additional studies are needed to determine the role of
taper assembly compared with design, manufacturing and other implant
variables. Cite this article:
Since 1996 more than one million metal-on-metal
articulations have been implanted worldwide. Adverse reactions to
metal debris are escalating. Here we present an algorithmic approach
to patient management. The general approach to all arthroplasty
patients returning for follow-up begins with a detailed history,
querying for pain, discomfort or compromise of function. Symptomatic
patients should be evaluated for intra-articular and extra-articular
causes of pain. In large head MoM arthroplasty, aseptic loosening
may be the source of pain and is frequently difficult to diagnose.
Sepsis should be ruled out as a source of pain. Plain radiographs
are evaluated to rule out loosening and osteolysis, and assess component
position. Laboratory evaluation commences with erythrocyte sedimentation
rate and C-reactive protein, which may be elevated. Serum metal
ions should be assessed by an approved facility. Aspiration, with
manual cell count and culture/sensitivity should be performed, with
cloudy to creamy fluid with predominance of monocytes often indicative
of failure. Imaging should include ultrasound or metal artifact
reduction sequence MRI, specifically evaluating for fluid collections
and/or masses about the hip. If adverse reaction to metal debris
is suspected then revision to metal or ceramic-on-polyethylene is indicated
and can be successful. Delay may be associated with extensive soft-tissue
damage and hence poor clinical outcome.
Failure of bone repair is a challenging problem in the management of fractures. There is a limited supply of autologous bone grafts for treating nonunions, with associated morbidity after harvesting. There is need for a better source of cells for repair. Mesenchymal stem cells (MSCs) hold promise for healing of bone because of their capacity to differentiate into osteoblasts and their availability from a wide variety of sources. Our review aims to evaluate the available clinical evidence and recent progress in strategies which attempt to use autologous and heterologous MSCs in clinical practice, including genetically-modified MSCs and those grown on scaffolds. We have compared various procedures for isolating and expanding a sufficient number of MSCs for use in a clinical setting. There are now a number of clinical studies which have shown that implantation of MSCs is an effective, safe and durable method for aiding the repair and regeneration of bone.
Biochemical markers of bone-turnover have long been used to complement the radiological assessment of patients with metabolic bone disease. Their implementation in daily clinical practice has been helpful in the understanding of the pathogenesis of osteoporosis, the selection of the optimal dose and the understanding of the progression of the onset and resolution of treatment. Since they are derived from both cortical and trabecular bone, they reflect the metabolic activity of the entire skeleton rather than that of individual cells or the process of mineralisation. Quantitative changes in skeletal-turnover can be assessed easily and non-invasively by the measurement of bone-turnover markers. They are commonly subdivided into three categories; 1) bone-resorption markers, 2) osteoclast regulatory proteins and 3) bone-formation markers. Because of the rapidly accumulating new knowledge of bone matrix biochemistry, attempts have been made to use them in the interpretation and characterisation of various stages of the healing of fractures. Early knowledge of the individual progress of a fracture could help to avoid delayed or nonunion by enabling modification of the host’s
Although mechanical stabilisation has been a hallmark of orthopaedic surgical management, orthobiologics are now playing an increasing role. Platelet-rich plasma (PRP) is a volume of plasma fraction of autologous blood having platelet concentrations above baseline. The platelet α granules are rich in growth factors that play an essential role in tissue healing, such as transforming growth factor-β, vascular endothelial growth factor, and platelet-derived growth factor. PRP is used in various surgical fields to enhance bone and soft-tissue healing by placing supraphysiological concentrations of autologous platelets at the site of tissue damage. The easily obtainable PRP and its possible beneficial outcome hold promise for new regenerative treatment approaches. The aim of this literature review was to describe the bioactivities of PRP, to elucidate the different techniques for PRP preparation, to review animal and human studies, to evaluate the evidence regarding the use of PRP in trauma and orthopaedic surgery, to clarify risks, and to provide guidance for future research.
Articular cartilage repair remains a challenge to surgeons and basic scientists. The field of tissue engineering allows the simultaneous use of material scaffolds, cells and signalling molecules to attempt to modulate the regenerative tissue. This review summarises the research that has been undertaken to date using this approach, with a particular emphasis on those techniques that have been introduced into clinical practice, via in vitro and preclinical studies.
The operative treatment of displaced fractures of the tibial plateau is challenging. Recent developments in the techniques of internal fixation, including the development of locked plating and minimal invasive techniques have changed the treatment of these fractures. We review current surgical approaches and techniques, improved devices for internal fixation and the clinical outcome after utilisation of new methods for locked plating.
Methicillin-resistant Staphylococcus aureus (MRSA) has become a ubiquitous bacterium in both the hospital and community setting. There are two major subclassifications of MRSA, community-acquired and healthcare-acquired, each with differing pathogenicity and management. MRSA is increasingly responsible for infections in otherwise healthy, active adults. Local outbreaks affect both professional and amateur athletes and there is increasing public awareness of the issue. Health-acquired MRSA has major cost and outcome implications for patients and hospitals. The increasing prevalence and severity of MRSA means that the orthopaedic community should have a basic knowledge of the bacterium, its presentation and options for treatment. This paper examines the evolution of MRSA, analyses the spectrum of diseases produced by this bacterium and presents current prevention and treatment strategies for orthopaedic infections from MRSA.
The pathophysiology of intervertebral disc degeneration has been extensively studied. Various factors have been suggested as influencing its aetiology, including mechanical factors, such as compressive loading, shear stress and vibration, as well as ageing, genetic, systemic and toxic factors, which can lead to degeneration of the disc through biochemical reactions. How are these factors linked? What is their individual importance? There is no clear evidence indicating whether ageing in the presence of repetitive injury or repetitive injury in the absence of ageing plays a greater role in the degenerative process. Mechanical factors can trigger biochemical reactions which, in turn, may promote the normal
The management of bone loss in revision replacement of the knee remains a challenge despite an array of options available to the surgeon. Bone loss may occur as a result of the original disease, the design of the prosthesis, the mechanism of failure or technical error at initial surgery. The aim of revision surgery is to relieve pain and improve function while addressing the mechanism of failure in order to reconstruct a stable platform with transfer of load to the host bone. Methods of reconstruction include the use of cement, modular metal augmentation of prostheses, custom-made, tumour-type or hinged implants and bone grafting. The published results of the surgical techniques are summarised and a guide for the management of bone defects in revision surgery of the knee is presented.
Thromboprophylaxis remains a controversial subject. A vast amount of epidemiological and trial data about venous thromboembolism has been published over the past 40 years. These data have been distilled and synthesised into guidelines designed to help the practitioner translate this extensive research into ‘evidence-based’ advice. Guidelines should, in theory, benefit patient care by ensuring that every patient routinely receives the best prophylaxis; without guidelines, it is argued, patients may fail to receive treatment or be exposed to protocols which are ineffective, dangerous or expensive. Guidelines, however, have not been welcomed or applied universally. In the United States, orthopaedic surgeons have published their concerns about the thromboprophylaxis guidelines prepared by the American College of Chest Physicians. In Britain, controversy persists with many surgeons unconvinced of the risk/benefit, cost/benefit or practicality of thromboprophylaxis. The extended remit of the recent National Institute of Clinical Excellence thromboprophylaxis guidelines has been challenged. The reasons for this disquiet are addressed in this paper and particular emphasis is placed on how clinically-acceptable guidelines could be developed and applied.
This paper reviews the current literature concerning the main clinical factors which can impair the healing of fractures and makes recommendations on avoiding or minimising these in order to optimise the outcome for patients. The clinical implications are described.
The subject of central nervous system damage includes a wide variety of problems, from the slow selective ‘picking off’ of characteristic sub-populations of neurons typical of neurodegenerative diseases, to the wholesale destruction of areas of brain and spinal cord seen in traumatic injury and stroke. Experimental repair strategies are diverse and the type of pathology dictates which approach will be appropriate. Damage may be to grey matter (loss of neurons), white matter (cutting of axons, leaving neurons otherwise intact, at least initially) or both. This review will consider four possible forms of treatment for repair of the human central nervous system.
Technological advances and shorter rescue times have allowed early and effective resuscitation after trauma and brought attention to the host response to injury. Trauma patients are at risk of progressive organ dysfunction from what appears to be an uncontrolled immune response. The availability of improved techniques of molecular diagnosis has allowed investigation of the role of genetic variations in the inflammatory response to post-traumatic complications and particularly to sepsis. This review examines the current evidence for the genetic predisposition to adverse outcome after trauma. While there is evidence supporting the involvement of different polymorphic variants of genes in determining the post-traumatic course and the development of complications, larger-scale studies are needed to improve the understanding of how genetic variability influences the responses to post-traumatic complications and pharmacotherapy.
Polymethylmethacrylate remains one of the most enduring materials in orthopaedic surgery. It has a central role in the success of total joint replacement and is also used in newer techniques such as percutaneous vertebroplasty and kyphoplasty. This article describes the current uses and limitations of polymethylmethacrylate in orthopaedic surgery. It focuses on its mechanical and chemical properties and links these to its clinical performance. The behaviour of antibiotic-loaded bone cement are discussed, together with areas of research that are now shedding light upon the behaviour of this unique biomaterial.
The long-term effects of metal-on-metal arthroplasty are currently under scrutiny because of the potential
The literature on fracture repair has been reviewed. The traditional concepts of delayed and nonunion have been examined in terms of the phased and balanced anabolic and catabolic responses in bone repair. The role of medical manipulation of these inter-related responses in the fracture healing have been considered.
We undertook a review of the literature relating to the two basic stem designs in use in cemented hip replacement, namely loaded tapers or force-closed femoral stems, and the composite beam or shape-closed designs. The associated stem fixation theory as understood from It is clear that both design principles are capable of producing successful long-term results, providing that their specific requirements of stem metallurgy, shape and surface finish, preparation of the bone and handling of the cement are observed.