Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 10 | Pages 1619 - 1626
1 Oct 2021
Bi M Zhou K Gan K Ding W Zhang T Ding S Li J

Aims. The aim of this study is to provide a detailed description of cases combining bridging patch repair with artificial ligament “internal brace” reinforcement to treat irreparable massive rotator cuff tears, and report the preliminary results. Methods. This is a retrospective review of patients with irreparable massive rotator cuff tears undergoing fascia lata autograft bridging repair with artificial ligament “internal brace” reinforcement technique between January 2017 and May 2018. Inclusion criteria were: patients treated arthroscopically for an incompletely reparable massive rotator cuff tear (dimension > 5 cm or two tendons fully torn), stage 0 to 4 supraspinatus fatty degeneration on MRI according to the Goutallier grading system, and an intact or reparable infraspinatus and/or subscapularis tendon of radiological classification Hamada 0 to 4. The surgical technique comprised two components: first, superior capsular reconstruction using an artificial ligament as an “internal brace” protective device for a fascia lata patch. The second was fascia lata autograft bridging repair for the torn supraspinatus. In all, 26 patients with a mean age 63.4 years (SD 6.2) were included. Results. All patients underwent more than two years of follow-up (mean 33.5 months (24 to 45)). All clinical scores were also improved at two-year follow-up (mean visual analogue scale 0.7 (SD 0.5) vs 6.1 (SD 1.2); p < 0.001; mean American Shoulder and Elbow Surgeons score 93.5 (SD 5.3) vs 42.5 (SD 10.8); p < 0.001; mean University of California, Los Angeles score, 31.7 (SD 3.7) vs 12.0 (SD 3.1); p < 0.001; and mean Constant-Murley score 88.7 (SD 3.5) vs 43.3 (SD 10.9); p < 0.001), and 24 of 26 fascia lata grafts were fully healed on MRI (92%). One patient had haematoma formation at the harvesting side of the fascia lata at two days postoperatively. Conclusion. The fascia lata autograft bridging repair combined with artificial ligament internal brace reinforcement technique achieved good functional outcomes, with a high rate of graft healing at two-year follow-up. Although the short-term results are promising, further studies with a greater number of patients would provide clearer results. Cite this article: Bone Joint J 2021;103-B(10):1619–1626


The Bone & Joint Journal
Vol. 97-B, Issue 12 | Pages 1657 - 1661
1 Dec 2015
Taranu R Rushton PRP Serrano-Pedraza I Holder L Wallace WA Candal-Couto JJ

Dislocation of the acromioclavicular joint is a relatively common injury and a number of surgical interventions have been described for its treatment. Recently, a synthetic ligament device has become available and been successfully used, however, like other non-native solutions, a compromise must be reached when choosing non-anatomical locations for their placement. This cadaveric study aimed to assess the effect of different clavicular anchorage points for the Lockdown device on the reduction of acromioclavicular joint dislocations, and suggest an optimal location. We also assessed whether further stability is provided using a coracoacromial ligament transfer (a modified Neviaser technique). The acromioclavicular joint was exposed on seven fresh-frozen cadaveric shoulders. The joint was reconstructed using the Lockdown implant using four different clavicular anchorage points and reduction was measured. The coracoacromial ligament was then transferred to the lateral end of the clavicle, and the joint re-assessed. If the Lockdown ligament was secured at the level of the conoid tubercle, the acromioclavicular joint could be reduced anatomically in all cases. If placed medial or 2 cm lateral, the joint was irreducible. If the Lockdown was placed 1 cm lateral to the conoid tubercle, the joint could be reduced with difficulty in four cases. Correct placement of the Lockdown device is crucial to allow anatomical joint reduction. Even when the Lockdown was placed over the conoid tubercle, anterior clavicle displacement remained but this could be controlled using a coracoacromial ligament transfer.

Cite this article: Bone Joint J 2015;97-B:1657–61.


The Bone & Joint Journal
Vol. 97-B, Issue 1 | Pages 83 - 88
1 Jan 2015
Kocsis G McCulloch TA Thyagarajan D Wallace WA

The LockDown device (previously called Surgilig) is a braided polyester mesh which is mostly used to reconstruct the dislocated acromioclavicular joint. More than 11 000 have been implanted worldwide. Little is known about the tissue reaction to the device nor to its wear products when implanted in an extra-articular site in humans. This is of importance as an adverse immunological reaction could result in osteolysis or damage to the local tissues, thereby affecting the longevity of the implant.

We analysed the histology of five LockDown implants retrieved from five patients over the last seven years by one of the senior authors. Routine analysis was carried out in all five cases and immunohistochemistry in one.

The LockDown device acts as a scaffold for connective tissue which forms an investing fibrous pseudoligament. The immunological response at the histological level seems favourable with a limited histiocytic and giant cell response to micron-sized wear particles. The connective tissue envelope around the implant is less organised than a native ligament.

Cite this article: Bone Joint J 2015;97-B:83–8.