Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called ‘anabolic window’. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/OPG pathway. Ongoing investigation into their effect on bone formation through ‘coupled’ and ‘uncoupled’ mechanisms further underlines the impact of intermittent PTH on both cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying its effect.
The cytotoxicity induced by cobalt ions (Co2+) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co2+ and Co-NPs on liver cells, and explain further the potential mechanisms. Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study. Cytotoxicity was evaluated by MTT and lactate dehydrogenase release assay. In order to clarify the potential mechanisms, reactive oxygen species, Bax/Bcl-2 mRNA expression, IL-8 mRNA expression and DNA damage were assessed on BRL-3A cells after Co2+ or Co-NPs treatment.Objectives
Methods
To investigate the appropriate dose and interval for the administration
of triamcinolone acetonide (TA) in treating tendinopathy to avoid
adverse effects such as tendon degeneration and rupture. Human rotator cuff-derived cells were cultured using three media:
regular medium (control), regular medium with 0.1 mg/mL of TA (low
TA group), and with 1.0 mg/mL of TA (high TA group). The cell morphology,
apoptosis, and viability were assessed at designated time points.Objectives
Methods
Ketamine has been used in combination with a
variety of other agents for intra-articular analgesia, with promising results.
However, although it has been shown to be toxic to various types
of cell, there is no available information on the effects of ketamine
on chondrocytes. We conducted a prospective randomised controlled study to evaluate
the effects of ketamine on cultured chondrocytes isolated from rat
articular cartilage. The cultured cells were treated with 0.125
mM, 0.250 mM, 0.5 mM, 1 mM and 2 mM of ketamine respectively for
6 h, 24 hours and 48 hours, and compared with controls. Changes of
apoptosis were evaluated using fluorescence microscopy with a 490
nm excitation wavelength.
The aim of this study was to investigate the occurrence of tissue hypoxia and apoptosis at different stages of tendinopathy and tears of the rotator cuff. We studied tissue from 24 patients with eight graded stages of either impingement (mild, moderate and severe) or tears of the rotator cuff (partial, small, medium, large and massive) and three controls. Biopsies were analysed using three immunohistochemical techniques, namely antibodies against HIF-1α (a transcription factor produced in a hypoxic environment), BNip3 (a HIF-1α regulated pro-apoptotic protein) and TUNEL (detecting DNA fragmentation in apoptosis). The HIF-1α expression was greatest in mild impingement and in partial, small, medium and large tears. BNip3 expression increased significantly in partial, small, medium and large tears but was reduced in massive tears.
We have studied the effects of bupivacaine on human and bovine articular chondrocytes These data show that prolonged exposure 0.5% and 0.25% bupivacaine solutions are potentially chondrotoxic.
Post-traumatic arthritis is a frequent consequence of articular fracture. The mechanisms leading to its development after such injuries have not been clearly delineated. A potential contributing factor is decreased viability of the articular chondrocytes. The object of this study was to characterise the regional variation in the viability of chondrocytes following joint trauma. A total of 29 osteochondral fragments from traumatic injuries to joints that could not be used in articular reconstruction were analysed for cell viability using the fluorescence live/dead assay and for apoptosis employing the TUNEL assay, and compared with cadaver control fragments. Chondrocyte death and apoptosis were significantly greater along the edge of the fracture and in the superficial zone of the osteochondral fragments. The middle and deep zones demonstrated significantly higher viability of the chondrocytes. These findings indicate the presence of both necrotic and apoptotic chondrocytes after joint injury and may provide further insight into the role of chondrocyte death in post-traumatic arthritis.
We attempted to repair full-thickness defects in the articular cartilage of the trochlear groove of the femur in 30 rabbit knee joints using allogenic cultured chondrocytes embedded in a collagen gel. The repaired tissues were examined at 2, 4, 8, 12 and 24 weeks after operation using histological and histochemical methods. The articular defect filling index measurement was derived from safranin-O stained sections. Apoptotic cellular fractions were derived from analysis of apoptosis
We stably transfected early passage chondrocytes with an anti-apoptotic Bcl-2 gene We conclude that NO-induced chondrocyte death involves a mechanism which appears to be subject to regulation by an anti-apoptotic Bcl-2 gene. Therefore, Bcl-2 gene therapy may prove to be of therapeutic value in protecting human articular chondrocytes.
Osteonecrosis of the femoral head usually affects young individuals and is responsible for up to 12% of total hip arthroplasties. The underlying pathophysiology of the death of the bone cells remains uncertain. We have investigated nitric oxide mediated apoptosis as a potential mechanism and found that steroid- and alcohol-induced osteonecrosis is accompanied by widespread apoptosis of osteoblasts and osteocytes. Certain drugs or their metabolites may have a direct cytotoxic effect on cancellous bone of the femoral head leading to apoptosis rather than purely necrosis.
Using in situ hybridisation and the terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick end-labelling (TUNEL) reaction in rats with osteonecrosis of the femoral head we have studied the effect of ischaemia on the gene expression of the stress proteins oxygen-regulated protein 150 (ORP150) and haemoxygenase 1 (HO1) and the death mechanism of the cells involved in osteonecrosis. Both ORP150 and HO1 have been reported to have important roles in the successful adaptation to oxygen deprivation. ORP150 and HO1 mRNA expression was induced by ischaemia in osteoblasts and osteocytes. In proliferative chondrocytes, these signals were detected constitutively. During the development of ischaemic osteonecrosis, the mechanism of cell death was apoptosis as indicated by DNA fragmentation and the presence of apoptotic bodies in osteocytes, chondrocytes and bone-marrow cells. After the initial ischaemic event, expression of ORP150 and HO1 mRNA, the TUNEL-positive reaction and empty lacunae were found sequentially. These findings were exclusive and may be considered to be markers for each stage in the development of osteonecrosis.
The growth plates of the femoral head of Japanese white rabbits aged 5, 10, 15 and 20 weeks were stained for apoptotic and proliferating chondrocytes using the TUNEL and PCNA antibody staining techniques. Both TUNEL- and PCNA-positive chondrocytes were detected in all of the specimens. The positive ratios of both stainings were calculated for the whole plate and for the resting, proliferating and hypertrophic zones. The highest ratios in both stainings occurred in the hypertrophic zone in all age groups. With growth, the TUNEL-positive ratio increased whereas the proliferating ratio decreased. We suggest that the increase in chondrocytic death by apoptosis and the decrease in cell proliferation potential led to closure of the growth plate.