Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Bone & Joint Research
Vol. 6, Issue 1 | Pages 14 - 21
1 Jan 2017
Osagie-Clouard L Sanghani A Coathup M Briggs T Bostrom M Blunn G

Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called ‘anabolic window’. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/OPG pathway. Ongoing investigation into their effect on bone formation through ‘coupled’ and ‘uncoupled’ mechanisms further underlines the impact of intermittent PTH on both cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying its effect.

Cite this article: L. Osagie-Clouard, A. Sanghani, M. Coathup, T. Briggs, M. Bostrom, G. Blunn. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017;6:14–21. DOI: 10.1302/2046-3758.61.BJR-2016-0085.R1.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 461 - 469
1 Oct 2016
Liu YK Deng XX Yang H

Objectives

The cytotoxicity induced by cobalt ions (Co2+) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co2+ and Co-NPs on liver cells, and explain further the potential mechanisms.

Methods

Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study. Cytotoxicity was evaluated by MTT and lactate dehydrogenase release assay. In order to clarify the potential mechanisms, reactive oxygen species, Bax/Bcl-2 mRNA expression, IL-8 mRNA expression and DNA damage were assessed on BRL-3A cells after Co2+ or Co-NPs treatment.


Bone & Joint Research
Vol. 3, Issue 12 | Pages 328 - 334
1 Dec 2014
Harada Y Kokubu T Mifune Y Inui A Sakata R Muto T Takase F Kurosaka M

Objectives

To investigate the appropriate dose and interval for the administration of triamcinolone acetonide (TA) in treating tendinopathy to avoid adverse effects such as tendon degeneration and rupture.

Methods

Human rotator cuff-derived cells were cultured using three media: regular medium (control), regular medium with 0.1 mg/mL of TA (low TA group), and with 1.0 mg/mL of TA (high TA group). The cell morphology, apoptosis, and viability were assessed at designated time points.


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 989 - 994
1 Jul 2014
Ozturk AM Ergun MA Demir T Gungor I Yilmaz A Kaya K

Ketamine has been used in combination with a variety of other agents for intra-articular analgesia, with promising results. However, although it has been shown to be toxic to various types of cell, there is no available information on the effects of ketamine on chondrocytes. We conducted a prospective randomised controlled study to evaluate the effects of ketamine on cultured chondrocytes isolated from rat articular cartilage. The cultured cells were treated with 0.125 mM, 0.250 mM, 0.5 mM, 1 mM and 2 mM of ketamine respectively for 6 h, 24 hours and 48 hours, and compared with controls. Changes of apoptosis were evaluated using fluorescence microscopy with a 490 nm excitation wavelength. Apoptosis and eventual necrosis were seen at each concentration. The percentage viability of the cells was inversely proportional to both the duration and dose of treatment (p = 0.002 and p = 0.009). Doses of 0.5 mM, 1 mM and 2mM were absolutely toxic. We concluded that in the absence of solid data to support the efficacy of intra-articular ketamine for the control of pain, and the toxic effects of ketamine on cultured chondrocytes shown by this study, intra-articular ketamine, either alone or in combination with other agents, should not be used to control pain. Cite this article: Bone Joint J 2014; 96-B:989–94


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 448 - 453
1 Mar 2010
Benson RT McDonnell SM Knowles HJ Rees JL Carr AJ Hulley PA

The aim of this study was to investigate the occurrence of tissue hypoxia and apoptosis at different stages of tendinopathy and tears of the rotator cuff. We studied tissue from 24 patients with eight graded stages of either impingement (mild, moderate and severe) or tears of the rotator cuff (partial, small, medium, large and massive) and three controls. Biopsies were analysed using three immunohistochemical techniques, namely antibodies against HIF-1α (a transcription factor produced in a hypoxic environment), BNip3 (a HIF-1α regulated pro-apoptotic protein) and TUNEL (detecting DNA fragmentation in apoptosis). The HIF-1α expression was greatest in mild impingement and in partial, small, medium and large tears. BNip3 expression increased significantly in partial, small, medium and large tears but was reduced in massive tears. Apoptosis was increased in small, medium, large and massive tears but not in partial tears. These findings reveal evidence of hypoxic damage throughout the spectrum of pathology of the rotator cuff which may contribute to loss of cells by apoptosis. This provides a novel insight into the causes of degeneration of the rotator cuff and highlights possible options for treatment


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 814 - 820
1 Jun 2008
Chu CR Izzo NJ Coyle CH Papas NE Logar A

We have studied the effects of bupivacaine on human and bovine articular chondrocytes in vitro. Time-lapse confocal microscopy of human articular chondrocytes showed > 95% cellular death after exposure to 0.5% bupivacaine for 30 minutes. Human and bovine chondrocytes exposed to 0.25% bupivacaine had a time-dependent reduction in viability, with longer exposure times resulting in higher cytotoxicity. Cellular death continued even after removal of 0.25% bupivacaine. After exposure to 0.25% bupivacaine for 15 minutes, flow cytometry showed bovine chondrocyte viability to be 41% of saline control after seven days. After exposure to 0.125% bupivacaine for up to 60 minutes, the viability of both bovine and human chondrocytes was similar to that of control groups.

These data show that prolonged exposure 0.5% and 0.25% bupivacaine solutions are potentially chondrotoxic.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 10 | Pages 1388 - 1395
1 Oct 2007
Hembree WC Ward BD Furman BD Zura RD Nichols LA Guilak F Olson SA

Post-traumatic arthritis is a frequent consequence of articular fracture. The mechanisms leading to its development after such injuries have not been clearly delineated. A potential contributing factor is decreased viability of the articular chondrocytes. The object of this study was to characterise the regional variation in the viability of chondrocytes following joint trauma. A total of 29 osteochondral fragments from traumatic injuries to joints that could not be used in articular reconstruction were analysed for cell viability using the fluorescence live/dead assay and for apoptosis employing the TUNEL assay, and compared with cadaver control fragments.

Chondrocyte death and apoptosis were significantly greater along the edge of the fracture and in the superficial zone of the osteochondral fragments. The middle and deep zones demonstrated significantly higher viability of the chondrocytes. These findings indicate the presence of both necrotic and apoptotic chondrocytes after joint injury and may provide further insight into the role of chondrocyte death in post-traumatic arthritis.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 977 - 983
1 Jul 2007
Lee JH Prakash KVB Pengatteeri YH Park SE Koh HS Han CW

We attempted to repair full-thickness defects in the articular cartilage of the trochlear groove of the femur in 30 rabbit knee joints using allogenic cultured chondrocytes embedded in a collagen gel. The repaired tissues were examined at 2, 4, 8, 12 and 24 weeks after operation using histological and histochemical methods. The articular defect filling index measurement was derived from safranin-O stained sections. Apoptotic cellular fractions were derived from analysis of apoptosis in situ using TUNEL staining, and was confirmed using caspase-3 staining along with quantification of the total cellularity. The mean articular defect filling index decreased with time. After 24 weeks it was 0.7 (sd 0.10), which was significantly lower than the measurements obtained earlier (p < 0.01). The highest mean percentage of apoptotic cells were observed at 12 weeks, although the total cellularity decreased with time. Because apoptotic cell death may play a role in delamination after chondrocyte transplantation, anti-apoptotic gene therapy may protect transplanted chondrocytes from apoptosis.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 12 | Pages 1660 - 1665
1 Dec 2006
Surendran S Kim SH Jee BK Ahn SH Gopinathan P Han CW

We stably transfected early passage chondrocytes with an anti-apoptotic Bcl-2 gene in vitro using a retrovirus vector. Samples of articular cartilage were obtained from 11 patients with a mean age of 69 years (61 to 75) who were undergoing total knee replacement for osteoarthritis. The Bcl-2-gene-transfected chondrocytes were compared with non-transfected and lac-Z-gene-transfected chondrocytes, both of which were used as controls. All three groups of cultured chondrocytes were incubated with nitric oxide (NO) for ten days. Using the Trypan Blue exclusion assay, an enzyme-linked immunosorbent assay and flow cytometric analysis, we found that the number of apoptotic chondrocytes was significantly higher in the non-transfected and lac-Z-transfected groups than in the Bcl-2-transfected group (p < 0.05). The Bcl-2-transfected chondrocytes were protected from NO-induced impairment of proteoglycan synthesis.

We conclude that NO-induced chondrocyte death involves a mechanism which appears to be subject to regulation by an anti-apoptotic Bcl-2 gene. Therefore, Bcl-2 gene therapy may prove to be of therapeutic value in protecting human articular chondrocytes.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 8 | Pages 1209 - 1213
1 Nov 2004
Calder JDF Buttery L Revell PA Pearse M Polak JM

Osteonecrosis of the femoral head usually affects young individuals and is responsible for up to 12% of total hip arthroplasties. The underlying pathophysiology of the death of the bone cells remains uncertain. We have investigated nitric oxide mediated apoptosis as a potential mechanism and found that steroid- and alcohol-induced osteonecrosis is accompanied by widespread apoptosis of osteoblasts and osteocytes. Certain drugs or their metabolites may have a direct cytotoxic effect on cancellous bone of the femoral head leading to apoptosis rather than purely necrosis.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 5 | Pages 751 - 759
1 Jul 2001
Sato M Sugano N Ohzono K Nomura S Kitamura Y Tsukamoto Y Ogawa S

Using in situ hybridisation and the terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick end-labelling (TUNEL) reaction in rats with osteonecrosis of the femoral head we have studied the effect of ischaemia on the gene expression of the stress proteins oxygen-regulated protein 150 (ORP150) and haemoxygenase 1 (HO1) and the death mechanism of the cells involved in osteonecrosis. Both ORP150 and HO1 have been reported to have important roles in the successful adaptation to oxygen deprivation.

ORP150 and HO1 mRNA expression was induced by ischaemia in osteoblasts and osteocytes. In proliferative chondrocytes, these signals were detected constitutively. During the development of ischaemic osteonecrosis, the mechanism of cell death was apoptosis as indicated by DNA fragmentation and the presence of apoptotic bodies in osteocytes, chondrocytes and bone-marrow cells. After the initial ischaemic event, expression of ORP150 and HO1 mRNA, the TUNEL-positive reaction and empty lacunae were found sequentially. These findings were exclusive and may be considered to be markers for each stage in the development of osteonecrosis.


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 3 | Pages 483 - 486
1 May 1997
Aizawa T Kokubun S Tanaka Y

The growth plates of the femoral head of Japanese white rabbits aged 5, 10, 15 and 20 weeks were stained for apoptotic and proliferating chondrocytes using the TUNEL and PCNA antibody staining techniques. Both TUNEL- and PCNA-positive chondrocytes were detected in all of the specimens. The positive ratios of both stainings were calculated for the whole plate and for the resting, proliferating and hypertrophic zones. The highest ratios in both stainings occurred in the hypertrophic zone in all age groups. With growth, the TUNEL-positive ratio increased whereas the proliferating ratio decreased.

We suggest that the increase in chondrocytic death by apoptosis and the decrease in cell proliferation potential led to closure of the growth plate.