Despite the expansion of arthroscopic surgery
of the shoulder, the open deltopectoral approach to the shoulder
is still frequently used, for example in fracture fixation and shoulder
replacement. However, it is sometimes accompanied by unexpected
bleeding. The cephalic vein is the landmark for the deltopectoral
interval, yet its intimate relationship with the deltoid artery,
and the
Total shoulder replacement is a successful procedure for degenerative or some inflammatory diseases of the shoulder. However, fixation of the glenoid seems to be the main weakness with a high rate of loosening. The results using all-polyethylene components have been better than those using metal-backed components. We describe our experience with 35 consecutive total shoulder replacements using a new metal-backed glenoid component with a mean follow-up of 75.4 months (48 to 154). Our implant differs from others because of its mechanism of fixation. It has a convex metal-backed bone interface and the main stabilising factor is a large hollow central peg. The patients were evaulated with standard radiographs and with the Constant Score, the Simple Shoulder Test and a visual analogue scale. All the scores improved and there was no loosening, no polyethylene-glenoid disassembly and no other implant-related complications. We conclude that a metal-backed glenoid component is a good option in total shoulder replacement with no worse results than of those using a cemented all-polyethylene prosthesis.
The diagnosis of nerve injury using thermotropic liquid crystal temperature strips was compared blindly and prospectively against operative findings in 36 patients requiring surgical exploration for unilateral upper limb lacerations with suspected nerve injury. Thermotropic liquid crystal strips were applied to affected and non-affected segments in both hands in all subjects. A pilot study showed that a simple unilateral laceration without nerve injury results in a cutaneous temperature difference between limbs, but not within each limb. Thus, for detection of a nerve injury, comparison was made against the unaffected nerve distribution in the same hand. Receiver operating characteristic curve analysis showed that an absolute temperature difference ≥ 1.0°C was diagnostic of a nerve injury (area under the curve = 0.985, sensitivity = 100%, specificity = 93.8%). Thermotropic liquid crystal strip assessment is a new, reliable and objective method for the diagnosis of traumatic peripheral nerve injuries. If implemented in the acute setting, it could improve the reliability of clinical assessment and reduce the number of negative surgical explorations.
Disorders of the pisotriquetral joint are well recognised as the cause of pain on the ulnar side of the wrist. The joint is not usually examined during routine arthroscopy because it is assumed to have a separate joint cavity to the radiocarpal joint, although there is often a connection between the two. We explored this connection during arthroscopy and in fresh-frozen cadaver wrists and found that in about half of the cases the pisotriquetral joint could be visualised through standard wrist portals. Four different types of connection were observed between the radiocarpal joint and the pisotriquetral joint. They ranged from a complete membrane separating the two, to no membrane at all, with various other types of connection in between. We recommend that inspection of the pisotriquetral joint should be a part of the protocol for routine arthroscopy of the wrist.