The primary objective of this study was to develop a validated classification system for assessing iatrogenic bone trauma and soft-tissue injury during total hip arthroplasty (THA). The secondary objective was to compare macroscopic bone trauma and soft-tissues injury in conventional THA (CO THA) versus robotic arm-assisted THA (RO THA) using this classification system. This study included 30 CO THAs versus 30 RO THAs performed by a single surgeon. Intraoperative photographs of the osseous acetabulum and periacetabular soft-tissues were obtained prior to implantation of the acetabular component, which were used to develop the proposed classification system. Interobserver and intraobserver variabilities of the proposed classification system were assessed.Aims
Methods
Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA. This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery.Aims
Methods
To perform an incremental cost-utility analysis and assess the impact of differential costs and case volume on the cost-effectiveness of robotic arm-assisted unicompartmental knee arthroplasty (rUKA) compared to manual (mUKA). This was a five-year follow-up study of patients who were randomized to rUKA (n = 64) or mUKA (n = 65). Patients completed the EuroQol five-dimension questionnaire (EQ-5D) preoperatively, and at three months and one, two, and five years postoperatively, which was used to calculate quality-adjusted life years (QALYs) gained. Costs for the primary and additional surgery and healthcare costs were calculated.Aims
Methods
BoneMaster is a thin electrochemically applied hydroxyapatite (HA) coating for orthopaedic implants that is quickly resorbed during osseointegration. Early stabilization is a surrogacy marker of good survival of femoral stems. The hypothesis of this study was that a BoneMaster coating yields a fast early and lasting fixation of stems. A total of 53 patients were randomized to be treated using Bi-Metric cementless femoral stems with either only a porous titanium plasma-sprayed coating (P group) or a porous titanium plasma-sprayed coating with an additional BoneMaster coating (PBM group). The patients were examined with radiostereometry until five years after surgery.Aims
Methods
To determine if primary cemented acetabular component geometry (long posterior wall (LPW), hooded, or offset reorientating) influences the risk of revision total hip arthroplasty (THA) for instability or loosening. The National Joint Registry (NJR) dataset was analyzed for primary THAs performed between 2003 and 2017. A cohort of 224,874 cemented acetabular components were included. The effect of acetabular component geometry on the risk of revision for instability or for loosening was investigated using log-binomial regression adjusting for age, sex, American Society of Anesthesiologists grade, indication, side, institution type, operating surgeon grade, surgical approach, polyethylene crosslinking, and prosthetic head size. A competing risk survival analysis was performed with the competing risks being revision for other indications or death.Aims
Methods
Unicompartmental knee arthroplasty (UKA) is a bone-preserving treatment option for osteoarthritis localized to a single compartment in the knee. The success of the procedure is sensitive to patient selection and alignment errors. Robotic arm-assisted UKA provides technological assistance to intraoperative bony resection accuracy, which is thought to improve ligament balancing. This paper presents the five-year outcomes of a comparison between manual and robotically assisted UKAs. The trial design was a prospective, randomized, parallel, single-centre study comparing surgical alignment in patients undergoing UKA for the treatment of medial compartment osteoarthritis (ISRCTN77119437). Participants underwent surgery using either robotic arm-assisted surgery or conventional manual instrumentation. The primary outcome measure (surgical accuracy) has previously been reported, and, along with secondary outcomes, were collected at one-, two-, and five-year timepoints. Analysis of five-year results and longitudinal analysis for all timepoints was performed to compare the two groups.Aims
Methods
Once knee arthritis and deformity have occurred, it is currently not known how to determine a patient’s constitutional (pre-arthritic) limb alignment. The purpose of this study was to describe and validate the arithmetic hip-knee-ankle (aHKA) algorithm as a straightforward method for preoperative planning and intraoperative restoration of the constitutional limb alignment in total knee arthroplasty (TKA). A comparative cross-sectional, radiological study was undertaken of 500 normal knees and 500 arthritic knees undergoing TKA. By definition, the aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA). The mechanical HKA (mHKA) of the normal group was compared to the mHKA of the arthritic group to examine the difference, specifically related to deformity in the latter. The mHKA and aHKA were then compared in the normal group to assess for differences related to joint line convergence. Lastly, the aHKA of both the normal and arthritic groups were compared to test the hypothesis that the aHKA can estimate the constitutional alignment of the limb by sharing a similar centrality and distribution with the normal population.Aims
Methods
We evaluated an operative technique, described
by the Exeter Hip Unit, to assist accurate introduction of the femoral
component. We assessed whether it led to a reduction in the rate
of leg-length discrepancy after total hip arthroplasty (THA). A total of 100 patients undergoing THA were studied retrospectively;
50 were undertaken using the test method and 50 using conventional
methods as a control group. The groups were matched with respect
to patient demographics and the grade of surgeon. Three observers
measured the depth of placement of the femoral component on post-operative
radiographs and measured the length of the legs. There was a strong correlation between the depth of insertion
of the femoral component and the templated depth in the test group
(R = 0.92), suggesting accuracy of the technique. The mean leg-length
discrepancy was 5.1 mm (0.6 to 21.4) pre-operatively and 1.3 mm
(0.2 to 9.3) post-operatively. There was no difference between Consultants
and Registrars as primary surgeons. Agreement between the templated
and post-operative depth of insertion was associated with reduced
post-operative leg-length discrepancy. The intra-class coefficient
was R ≥ 0.88 for all measurements, indicating high observer agreement.
The post-operative leg-length discrepancy was significantly lower
in the test group (1.3 mm) compared with the control group (6.3
mm, p <
0.001). The Exeter technique is reproducible and leads to a lower incidence
of leg-length discrepancy after THA. Cite this article:
Objectives. There remains a lack of data on the reliability of methods to
estimate tibial coverage achieved during total knee replacement.
In order to address this gap, the intra- and interobserver reliability
of a three-dimensional (3D)
The April 2012 Hip &
Pelvis Roundup. 360. looks at osteoporotic hip fractures, retrotrochanteric pain, fibrin adhesive and reattachment of articular cartilage, autologous bone marrow mononuclear cells and avascular necrosis, bearing surfaces, stability after THR,
As part of the national initiative to reduce
waiting times for joint replacement surgery in Wales, the Cardiff
and Vale NHS Trust referred 224 patients to the NHS Treatment Centre
in Weston-Super-Mare for total knee replacement (TKR). A total of
258 Kinemax TKRs were performed between November 2004 and August
2006. Of these, a total of 199 patients (232 TKRs, 90%) have been
followed up for five years. This cohort was compared with 258 consecutive
TKRs in 250 patients, performed at Cardiff and Vale Orthopaedic
Centre (CAVOC) over a similar time period. The five year cumulative
survival rate was 80.6% (95% confidence interval (CI) 74.0 to 86.0)
in the Weston-Super-Mare cohort and 95.0% (95% CI 90.2 to 98.2)
in the CAVOC cohort with revision for any reason as the endpoint.
The relative risk for revision at Weston-Super-Mare compared with
CAVOC was 3.88 (p <
0.001). For implants surviving five years,
the mean Oxford knee scores (OKS) and mean EuroQol (EQ-5D) scores
were similar (OKS: Weston-Super-Mare 29 (2 to 47) The results show a higher revision rate for patients operated
at Weston-Super-Mare Treatment Centre, with a reduction in functional
outcome and quality of life after revision. This further confirms
that patients moved from one area to another for joint replacement
surgery fare poorly.
The ideal bearing surface for young patients
undergoing total hip replacement (THR) remains controversial. We report
the five-year results of a randomised controlled trial comparing
the clinical and radiological outcomes of 102 THRs in 91 patients
who were <
65 years of age. These patients were randomised to
receive a cobalt–chrome on ultra-high-molecular-weight polyethylene,
cobalt–chrome on highly cross-linked polyethylene, or a ceramic-on-ceramic
bearing. In all, 97 hip replacements in 87 patients were available
for review at five years. Two hips had been revised, one for infection
and one for peri-prosthetic fracture. At the final follow-up there were no significant differences
between the groups for the mean Western Ontario and McMaster Universities
osteoarthritis index (pain, p = 0.543; function, p = 0.10; stiffness,
p = 0.99), Short Form-12 (physical component, p = 0.878; mental
component, p = 0.818) or Harris hip scores (p = 0.22). Radiological
outcomes revealed no significant wear in the ceramic group. Comparison of standard and highly cross-linked polyethylene,
however, revealed an almost threefold difference in the mean annual
linear wear rates (0.151 mm/year
Our aim in this pilot study was to evaluate the fixation of, the bone remodelling around, and the clinical outcome after surgery of a new, uncemented, fully hydroxyapatite-coated, collared and tapered femoral component, designed specifically for elderly patients with a fracture of the femoral neck. We enrolled 50 patients, of at least 70 years of age, with an acute displaced fracture of the femoral neck in this prospective single-series study. They received a total hip replacement using the new component and were followed up regularly for two years. Fixation was evaluated by radiostereometric analysis and bone remodelling by dual-energy x-ray absorptiometry. Hip function and the health-related quality of life were assessed using the Harris hip score and the EuroQol-5D. Up to six weeks post-operatively there was a mean subsidence of 0.2 mm (−2.1 to +0.5) and a retroversion of a mean of 1.2° (−8.2° to +1.5°). No component migrated after three months. The patients had a continuous loss of peri-prosthetic bone which amounted to a mean of 16% (−49% to +10%) at two years. The mean Harris hip score was 82 (51 to 100) after two years. The two-year results from this pilot study indicate that this new, uncemented femoral component can be used for elderly patients with osteoporotic fractures of the femoral neck.
We undertook a randomised prospective follow-up study of changes in peri-prosthetic bone mineral density (BMD) after hip resurfacing and compared them with the results after total hip replacement. A total of 59 patients were allocated to receive a hip resurfacing (n = 29) or an uncemented distally fixed total hip replacement (n = 30). The BMD was prospectively determined in four separate regions of interest of the femoral neck and in the calcar region corresponding to Gruen zone 7 for the hip resurfacing group and compared only to the calcar region in the total hip replacement group. Standardised measurements were performed pre-operatively and after three, six and 12 months. The groups were well matched in terms of gender distribution and mean age. The mean BMD in the calcar region increased after one year to 105.2% of baseline levels in the resurfaced group compared with a significant decrease to 82.1% in the total hip replacement group (p <
0.001) by 12 months. For the resurfaced group, there was a decrease in bone density in all four regions of the femoral neck at three months which did not reach statistical significance and was followed by recovery to baseline levels after 12 months. Hip resurfacing did indeed preserve BMD in the inferior femoral neck. In contrast, a decrease in the mean BMD in Gruen zone 7 followed uncemented distally fixed total hip replacement. Long term follow-up studies are necessary to see whether this benefit in preservation of BMD will be clinically relevant at future revision surgery.
The survivorship of contemporary resurfacing arthroplasty of the hip using metal-on-metal bearings is better than that of first generation designs, but short-term failures still occur. The most common reasons for failure are fracture of the femoral neck, loosening of the component, osteonecrosis of the femoral head, reaction to metal debris and malpositioning of the component. In 2008 the Australian National Joint Registry reported an inverse relationship between the size of the head component and the risk of revision in resurfacing hip arthroplasty. Hips with a femoral component size of ≤ 44 mm have a fivefold increased risk of revision than those with femoral components of ≥ 55 mm irrespective of gender. We have reviewed the literature to explore this observation and to identify possible reasons including the design of the implant, loading of the femoral neck, the orientation of the component, the production of wear debris and the effects of metal ions, penetration of cement and vascularity of the femoral head. Our conclusion is that although multifactorial, the most important contributors to failure in resurfacing arthroplasty of the hip are likely to be the design and geometry of the component and the orientation of the acetabular component.
We have investigated the accuracy of the
We have developed a novel method of calculating the radiological magnification of the hip using two separate radio-opaque markers. We recruited 74 patients undergoing radiological assessment following total hip replacement. Both the new double marker and a conventional single marker were used by the radiographer at the time of x-ray. The predicted magnification according to each marker was calculated, as was the true radiological magnification of the components. The correlation between true and predicted magnification was good using the double marker (r = 0.90, n = 74, p <
0.001), but only moderate for the single marker (r = 0.50, n = 63, p <
0.001). The median error was significantly less for the double marker than for the single (1.1% The double marker method appears to be superior to the single marker method when used in the clinical environment.
We aimed to determine the reliability, accuracy and the clinical role of
We have investigated the accuracy of placement of the femoral component using imageless navigation in 100 consecutive Birmingham Hip Resurfacings. Pre-operative templating determined the native neck-shaft angle and planned stem-shaft angle of the implant. The latter were verified post-operatively using digital anteroposterior unilateral radiographs of the hip. The mean neck-shaft angle determined before operation was 132.7° (118° to 160°). The mean planned stem-shaft angle was a relative valgus alignment of 9.7° ( Navigation in hip resurfacing may afford the surgeon a reliable and accurate method of placement of the femoral component.
As part of the government’s initiative to reduce waiting times for major joint surgery in Wales, the Cardiff and Vale NHS Trust sent 224 patients (258 knees) to the NHS Treatment Centre in Weston-Super-Mare for total knee replacement. The Kinemax total knee replacement system was used in all cases. The cumulative survival rate at three years was 79.2% (95% confidence interval (CI) 69.2 to 86.8) using re-operation for any cause as an endpoint and 85.3% (95% CI 75.9 to 91.8) using aseptic revision as an endpoint. This is significantly worse than that recorded in the published literature. These poor results have resulted in a significant impact on our service.
Digital radiography is becoming widespread. Accurate pre-operative
Magnification of anteroposterior radiographs of the pelvis is variable. To improve the accuracy of templating, reliable and radiographer-friendly methods of scaling are necessary. We assessed two methods of scaling digital radiographs of the pelvis: placing a coin of known diameter in the plane of interest between the patient’s thighs, and using a caliper to measure the bony width of the pelvis. A total of 39 patients who had recently undergone hemiarthroplasty of the hip or total hip replacement were enrolled in the study. The accuracy of the methods was assessed by comparing the actual diameter of the head of the prosthesis with the measured on-screen value. The coin method was within a mean of 1.12% (0% to 2.38%) of the actual measurement, the caliper group within 6.99% (0% to 16.67%). The coin method was significantly more accurate (p <
0.001). It was also reliable and radiographer friendly. We recommend it as the method of choice for scaling radiographs of the pelvis before hip surgery.
In 20 patients undergoing hybrid total hip arthroplasty, the reproducibility and accuracy of