Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. Methods. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the
This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously. Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.Aims
Methods
The primary objective of this study was to develop a validated classification system for assessing iatrogenic bone trauma and soft-tissue injury during total hip arthroplasty (THA). The secondary objective was to compare macroscopic bone trauma and soft-tissues injury in conventional THA (CO THA) versus robotic arm-assisted THA (RO THA) using this classification system. This study included 30 CO THAs versus 30 RO THAs performed by a single surgeon. Intraoperative photographs of the osseous acetabulum and periacetabular soft-tissues were obtained prior to implantation of the acetabular component, which were used to develop the proposed classification system. Interobserver and intraobserver variabilities of the proposed classification system were assessed.Aims
Methods
Aims. The Oxford Shoulder Score (OSS) is a 12-item measure commonly used for the assessment of shoulder surgeries. This study explores whether computerized adaptive testing (CAT) provides a shortened, individually tailored questionnaire while maintaining test accuracy. Methods. A total of 16,238 preoperative OSS were available in the National Joint Registry (NJR) for England, Wales, Northern Ireland, the Isle of Man, and the States of Guernsey dataset (April 2012 to April 2022). Prior to CAT, the foundational item response theory (IRT) assumptions of unidimensionality, monotonicity, and local independence were established. CAT compared sequential item selection with stopping criteria set at standard error (SE) < 0.32 and SE < 0.45 (equivalent to reliability coefficients of 0.90 and 0.80) to full-length patient-reported outcome measure (PROM) precision. Results. Confirmatory factor analysis (CFA) for unidimensionality exhibited satisfactory fit with
Manual impaction, with a mallet and introducer, remains the standard method of installing cementless acetabular cups during total hip arthroplasty (THA). This study aims to quantify the accuracy and precision of manual impaction strikes during the seating of an acetabular component. This understanding aims to help improve impaction surgical techniques and inform the development of future technologies. Posterior approach THAs were carried out on three cadavers by an expert orthopaedic surgeon. An instrumented mallet and introducer were used to insert cementless acetabular cups. The motion of the mallet, relative to the introducer, was analyzed for a total of 110 strikes split into low-, medium-, and high-effort strikes. Three parameters were extracted from these data: strike vector, strike offset, and mallet face alignment.Aims
Methods
Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA. This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery.Aims
Methods
This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis. A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included.Aims
Methods
The Manchester-Oxford Foot Questionnaire (MOxFQ) is an anatomically specific patient-reported outcome measure (PROM) currently used to assess a wide variety of foot and ankle pathology. It consists of 16 items across three subscales measuring distinct but related traits: walking/standing ability, pain, and social interaction. It is the most used foot and ankle PROM in the UK. Initial MOxFQ validation involved analysis of 100 individuals undergoing hallux valgus surgery. This project aimed to establish whether an individual’s response to the MOxFQ varies with anatomical region of disease (measurement invariance), and to explore structural validity of the factor structure (subscale items) of the MOxFQ. This was a single-centre, prospective cohort study involving 6,637 patients (mean age 52 years (SD 17.79)) presenting with a wide range of foot and ankle pathologies between January 2013 and December 2021. To assess whether the MOxFQ responses vary by anatomical region of foot and ankle disease, we performed multigroup confirmatory factor analysis. To assess the structural validity of the subscale items, exploratory and confirmatory factor analyses were performed.Aims
Methods
Oxidized zirconium (OxZi) and highly cross-linked polyethylene (HXLPE) were developed to minimize wear and risk of osteolysis in total hip arthroplasty (THA). However, retrieval studies have shown that scratched femoral heads may lead to runaway wear, and few reports of long-term results have been published. The purpose of this investigation is to report minimum ten-year wear rates and clinical outcomes of THA with OxZi femoral heads on HXLPE, and to compare them with a retrospective control group of cobalt chrome (CoCr) or ceramic heads on HXLPE. From 2003 to 2006, 108 THAs were performed on 96 patients using an OxZi head with a HXLPE liner with minimum ten-year follow-up. Harris Hip Scores (HHS) were collected preoperatively and at the most recent follow-up (mean 13.3 years). Linear and volumetric liner wear was measured on radiographs of 85 hips with a minimum ten-year follow-up (mean 14.5 years). This was compared to a retrospective control group of 45 THAs using ceramic or CoCr heads from October 1999 to February 2005, with a minimum of ten years’ follow-up.Aims
Methods
Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage deep learning (DL) to measure the femoral mechanical-anatomical axis angle (FMAA) in a heterogeneous cohort. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A DL workflow was created to measure the FMAA and validated against human measurements. To reflect potential intramedullary guide placement during manual TKA, two different FMAAs were calculated either using a line approximating the entire diaphyseal shaft, and a line connecting the apex of the femoral intercondylar sulcus to the centre of the diaphysis. The proportion of FMAAs outside a range of 5.0° (SD 2.0°) was calculated for both definitions, and FMAA was compared using univariate analyses across sex, BMI, knee alignment, and femur length.Aims
Methods
To map the Oxford Knee Score (OKS) and High Activity Arthroplasty Score (HAAS) items to a common scale, and to investigate the psychometric properties of this new scale for the measurement of knee health. Patient-reported outcome measure (PROM) data measuring knee health were obtained from the NHS PROMs dataset and Total or Partial Knee Arthroplasty Trial (TOPKAT). Assumptions for common scale modelling were tested. A graded response model (fitted to OKS item responses in the NHS PROMs dataset) was used as an anchor to calibrate paired HAAS items from the TOPKAT dataset. Information curves for the combined OKS-HAAS model were plotted. Bland-Altman analysis was used to compare common scale scores derived from OKS and HAAS items. A conversion table was developed to map between HAAS, OKS, and the common scale.Aims
Methods
The goal was to evaluate tibiofemoral knee joint kinematics during stair descent, by simulating the full stair descent motion in vitro. The knee joint kinematics were evaluated for two types of knee implants: bi-cruciate retaining and bi-cruciate stabilized. It was hypothesized that the bi-cruciate retaining implant better approximates native kinematics. The in vitro study included 20 specimens which were tested during a full stair descent with physiological muscle forces in a dynamic knee rig. Laxity envelopes were measured by applying external loading conditions in varus/valgus and internal/external direction.Aims
Methods
Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds. A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp).Aims
Methods
This systematic review aims to compare the precision of component positioning, patient-reported outcome measures (PROMs), complications, survivorship, cost-effectiveness, and learning curves of MAKO robotic arm-assisted unicompartmental knee arthroplasty (RAUKA) with manual medial unicompartmental knee arthroplasty (mUKA). Searches of PubMed, MEDLINE, and Google Scholar were performed in November 2021 according to the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. Search terms included “robotic”, “unicompartmental”, “knee”, and “arthroplasty”. Published clinical research articles reporting the learning curves and cost-effectiveness of MAKO RAUKA, and those comparing the component precision, functional outcomes, survivorship, or complications with mUKA, were included for analysis.Aims
Methods
This study addressed two questions: first, does surgical correction of an idiopathic scoliosis increase the volume of the rib cage, and second, is it possible to evaluate the change in lung function after corrective surgery for adolescent idiopathic scoliosis (AIS) using biplanar radiographs of the ribcage with 3D reconstruction? A total of 45 patients with a thoracic AIS which needed surgical correction and fusion were included in a prospective study. All patients underwent pulmonary function testing (PFT) and low-dose biplanar radiographs both preoperatively and one year after surgery. The following measurements were recorded: forced vital capacity (FVC), slow vital capacity (SVC), and total lung capacity (TLC). Rib cage volume (RCV), maximum rib hump, main thoracic curve Cobb angle (MCCA), medial-lateral and anteroposterior diameter, and T4-T12 kyphosis were calculated from 3D reconstructions of the biplanar radiographs.Aims
Methods
The aims of this systematic review were to assess the learning curve of semi-active robotic arm-assisted total hip arthroplasty (rTHA), and to compare the accuracy, patient-reported functional outcomes, complications, and survivorship between rTHA and manual total hip arthroplasty (mTHA). Searches of PubMed, Medline, and Google Scholar were performed in April 2020 in line with the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. Search terms included “robotic”, “hip”, and “arthroplasty”. The criteria for inclusion were published clinical research articles reporting the learning curve for rTHA (robotic arm-assisted only) and those comparing the implantation accuracy, functional outcomes, survivorship, or complications with mTHA.Aims
Methods
The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output.Aims
Methods
Vertebrates have adapted to life on Earth and its constant gravitational field, which exerts load on the body and influences the structure and function of tissues. While the effects of microgravity on muscle and bone homeostasis are well described, with sarcopenia and osteoporosis observed in astronauts returning from space, the effects of shorter exposures to increased gravitational fields are less well characterized. We aimed to test how hypergravity affects early cartilage and skeletal development in a zebrafish model. We exposed zebrafish to 3 g and 6 g hypergravity from three to five days post-fertilization, when key events in jaw cartilage morphogenesis occur. Following this exposure, we performed immunostaining along with a range of histological stains and transmission electron microscopy (TEM) to examine cartilage morphology and structure, atomic force microscopy (AFM) and nanoindentation experiments to investigate the cartilage material properties, and finite element modelling to map the pattern of strain and stress in the skeletal rudiments.Aims
Methods
The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups. This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups.Aims
Methods
Aims. The purpose of this study was to develop a personalized outcome prediction tool, to be used with knee arthroplasty patients, that predicts outcomes (lengths of stay (LOS), 90 day readmission, and one-year patient-reported outcome measures (PROMs) on an individual basis and allows for dynamic modifiable risk factors. Methods. Data were prospectively collected on all patients who underwent total or unicompartmental knee arthroplasty at a between July 2015 and June 2018. Cohort 1 (n = 5,958) was utilized to develop models for LOS and 90 day readmission. Cohort 2 (n = 2,391, surgery date 2015 to 2017) was utilized to develop models for one-year improvements in Knee Injury and Osteoarthritis Outcome Score (KOOS) pain score, KOOS function score, and KOOS quality of life (QOL) score. Model accuracies within the imputed data set were assessed through cross-validation with