Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Bone & Joint 360
Vol. 12, Issue 1 | Pages 17 - 20
1 Feb 2023

The February 2023 Hip & Pelvis Roundup360 looks at: Total hip arthroplasty or internal fixation for hip fracture?; Significant deterioration in quality of life and increased frailty in patients waiting more than six months for total hip or knee arthroplasty: a cross-sectional multicentre study; Long-term cognitive trajectory after total joint arthroplasty; Costal cartilage grafting for a large osteochondral lesion of the femoral head; Foley catheters not a problem in the short term; Revision hips still a mortality burden?; How to position implants with a robotic arm; Uncemented stems in hip fracture?


Bone & Joint 360
Vol. 6, Issue 3 | Pages 14 - 16
1 Jun 2017


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 4 | Pages 488 - 492
1 Apr 2012
Vijayan S Bartlett W Bentley G Carrington RWJ Skinner JA Pollock RC Alorjani M Briggs TWR

Matrix-induced autologous chondrocyte implantation (MACI) is an established technique used to treat osteochondral lesions in the knee. For larger osteochondral lesions (> 5 cm2) deeper than approximately 8 mm we have combined the use of two MACI membranes with impaction grafting of the subchondral bone. We report our results of 14 patients who underwent the ‘bilayer collagen membrane’ technique (BCMT) with a mean follow-up of 5.2 years (2 to 8). There were 12 men and two women with a mean age of 23.6 years (16 to 40). The mean size of the defect was 7.2 cm2 (5.2 to 12 cm2) and were located on the medial (ten) or lateral (four) femoral condyles. The mean modified Cincinnati knee score improved from 45.1 (22 to 70) pre-operatively to 82.8 (34 to 98) at the most recent review (p < 0.05). The visual analogue pain score improved from 7.3 (4 to 10) to 1.7 (0 to 6) (p < 0.05). Twelve patients were considered to have a good or excellent clinical outcome. One graft failed at six years.

The BCMT resulted in excellent functional results and durable repair of large and deep osteochondral lesions without a high incidence of graft-related complications.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 9 | Pages 1195 - 1202
1 Sep 2010
Moran CJ Shannon FJ Barry FP O’Byrne JM O’Brien T Curtin W

Orthopaedic surgery is in an exciting transitional period as modern surgical interventions, implants and scientific developments are providing new therapeutic options. As advances in basic science and technology improve our understanding of the pathology and repair of musculoskeletal tissue, traditional operations may be replaced by newer, less invasive procedures which are more appropriately targeted at the underlying pathophysiology. However, evidence-based practice will remain a basic requirement of care. Orthopaedic surgeons can and should remain at the forefront of the development of novel therapeutic interventions and their application. Progression of the potential of bench research into an improved array of orthopaedic treatments in an effective yet safe manner will require the development of a subgroup of specialists with extended training in research to play an important role in bridging the gap between laboratory science and clinical practice. International regulations regarding the introduction of new biological treatments will place an additional burden on the mechanisms of this translational process, and orthopaedic surgeons who are trained in science, surgery and the regulatory environment will be essential. Training and supporting individuals with these skills requires special consideration and discussion by the orthopaedic community.

In this paper we review some traditional approaches to the integration of orthopaedic science and surgery, the therapeutic potential of current regenerative biomedical science for cartilage repair and ways in which we may develop surgeons with the skills required to translate scientific discovery into effective and properly assessed orthopaedic treatments.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 8 | Pages 997 - 1006
1 Aug 2009
Gikas PD Bayliss L Bentley G Briggs TWR

Chondral damage to the knee is common and, if left untreated, can proceed to degenerative osteoarthritis. In symptomatic patients established methods of management rely on the formation of fibrocartilage which has poor resistance to shear forces. The formation of hyaline or hyaline-like cartilage may be induced by implanting autologous, cultured chondrocytes into the chondral or osteochondral defect.

Autologous chondrocyte implantation may be used for full-thickness chondral or osteochondral injuries which are painful and debilitating with the aim of replacing damaged cartilage with hyaline or hyaline-like cartilage, leading to improved function. The intermediate and long-term functional and clinical results are promising.

We provide a review of autologous chondrocyte implantation and describe our experience with the technique at our institution with a mean follow-up of 32 months (1 to 9 years).

The procedure is shown to offer statistically significant improvement with advantages over other methods of management of chondral defects.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 2 | Pages 232 - 235
1 Feb 2008
Hanna SA Aston WJS Gikas PD Briggs TWR

We describe two cases of osteochondritis dissecans (OCD) affecting both femoral condyles in the same knee. The patients presented with recurrent episodes of pain and swelling, but these were initially thought to be ‘growing pains’. Eventually, a delayed diagnosis of bicondylar OCD was established and both patients were referred for further management. After assessing the extent of the disease on MRI, matrix-induced autologous chondrocyte implantation was performed to treat the defects of the lateral condyle in each case, with a plan to address the medial defects at a later stage. Proposed theories on the aetiology of the condition and available methods of treatment are discussed. A diagnosis of OCD should be considered in young patients with persistent knee pain and effusions, and MRI is the investigation of choice for early detection


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 709 - 716
1 Jun 2007
Mulford JS Wakeley CJ Eldridge JDJ

Chronic patellofemoral instability can be a disabling condition. Management of patients with this condition has improved owing to our increased knowledge of the functional anatomy of the patellofemoral joint. Accurate assessment of the underlying pathology in the unstable joint enables the formulation of appropriate treatment. The surgical technique employed in patients for whom non-operative management has failed should address the diagnosed abnormality. We have reviewed the literature on the stabilising features of the patellofemoral joint, the recommended investigations and the appropriate forms of treatment.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 640 - 645
1 May 2005
Bartlett W Skinner JA Gooding CR Carrington RWJ Flanagan AM Briggs TWR Bentley G

Autologous chondrocyte implantation (ACI) is used widely as a treatment for symptomatic chondral and osteochondral defects of the knee. Variations of the original periosteum-cover technique include the use of porcine-derived type I/type III collagen as a cover (ACI-C) and matrix-induced autologous chondrocyte implantation (MACI) using a collagen bilayer seeded with chondrocytes. We have performed a prospective, randomised comparison of ACI-C and MACI for the treatment of symptomatic chondral defects of the knee in 91 patients, of whom 44 received ACI-C and 47 MACI grafts. Both treatments resulted in improvement of the clinical score after one year. The mean modified Cincinnati knee score increased by 17.6 in the ACI-C group and 19.6 in the MACI group (p = 0.32). Arthroscopic assessments performed after one year showed a good to excellent International Cartilage Repair Society score in 79.2% of ACI-C and 66.6% of MACI grafts. Hyaline-like cartilage or hyaline-like cartilage with fibrocartilage was found in the biopsies of 43.9% of the ACI-C and 36.4% of the MACI grafts after one year. The rate of hypertrophy of the graft was 9% (4 of 44) in the ACI-C group and 6% (3 of 47) in the MACI group. The frequency of re-operation was 9% in each group. We conclude that the clinical, arthroscopic and histological outcomes are comparable for both ACI-C and MACI. While MACI is technically attractive, further long-term studies are required before the technique is widely adopted


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 330 - 332
1 Mar 2005
Bartlett W Gooding CR Carrington RWJ Skinner JA Briggs TWR Bentley G

Autologous chondrocyte implantation (ACI) is a technique used for the treatment of symptomatic osteochondral defects of the knee. A variation of the original periosteum membrane technique is the matrix-induced autologous chondrocyte implantation (MACI) technique. The MACI membrane consists of a porcine type-I/III collagen bilayer seeded with chondrocytes. Osteochondral defects deeper than 8 to 10 mm usually require bone grafting either before or at the time of transplantation of cartilage. We have used a variation of Peterson’s ACI-periosteum sandwich technique using two MACI membranes with bone graft which avoids periosteal harvesting. The procedure is suture-free and requires less operating time and surgical exposure. We performed this MACI-sandwich technique on eight patients, five of whom were assessed at six months and one year post-operatively using the modified Cincinnati knee, the Stanmore functional rating and the visual analogue pain scores. All patients improved within six months with further improvement at one year. The clinical outcome was good or excellent in four after six months and one year. No significant graft-associated complications were observed. Our early results of the MACI-sandwich technique are encouraging although larger medium-term studies are required before there is widespread adoption of the technique


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 1 | Pages 128 - 134
1 Jan 2005
Goldberg AJ Lee DA Bader DL Bentley G

An increasing number of patients are treated by autologous chondrocyte implantation (ACI). This study tests the hypothesis that culture within a defined chondrogenic medium containing TGF-β enhances the reexpression of a chondrocytic phenotype and the subsequent production of cartilaginous extracellular matrix by human chondrocytes used in ACI. Chondrocytes surplus to clinical requirements for ACI from 24 patients were pelleted and cultured in either DMEM (Dulbecco’s modified eagles medium)/ITS+Premix/TGF-β1 or DMEM/10%FCS (fetal calf serum) and were subsequently analysed biochemically and morphologically.

Pellets cultured in DMEM/ITS+/TGF-β1 stained positively for type-II collagen, while those maintained in DMEM/10%FCS expressed type-I collagen. The pellets cultured in DMEM/ITS+/TGF-β1 were larger and contained significantly greater amounts of DNA and glycosaminoglycans. This study suggests that the use of a defined medium containing TGF-β is necessary to induce the re-expression of a differentiated chondrocytic phenotype and the subsequent stimulation of glycosaminoglycan and type-II collagen production by human monolayer expanded chondrocytes.