To compare the cost-utility of standard dressing with incisional negative-pressure wound therapy (iNPWT) in adults with closed surgical wounds associated with major trauma to the lower limbs. A within-trial economic evaluation was conducted from the UK NHS and personal social services (PSS) perspective based on data collected from the Wound Healing in Surgery for Trauma (WHiST) multicentre randomized clinical trial. Health resource utilization was collected over a six-month post-randomization period using trial case report forms and participant-completed questionnaires. Cost-utility was reported in terms of incremental cost per quality-adjusted life year (QALY) gained. Sensitivity analysis was conducted to test the robustness of cost-effectiveness estimates while uncertainty was handled using confidence ellipses and cost-effectiveness acceptability curves.Aims
Methods
We compared implant and patient survival following intraoperative periprosthetic femoral fractures (IOPFFs) during primary total hip arthroplasty (THA) with matched controls. This retrospective cohort study compared 4831 hips with IOPFF and 48 154 propensity score matched primary THAs without IOPFF implanted between 2004 and 2016, which had been recorded on a national joint registry. Implant and patient survival rates were compared between groups using Cox regression.Aims
Patients and Methods
The aim of this study was to estimate the 90-day risk of revision for periprosthetic femoral fracture associated with design features of cementless femoral stems, and to investigate the effect of a collar on this risk using a biomechanical A total of 337 647 primary total hip arthroplasties (THAs) from the United Kingdom National Joint Registry (NJR) were included in a multivariable survival and regression analysis to identify the adjusted hazard of revision for periprosthetic fracture following primary THA using a cementless stem. The effect of a collar in cementless THA on this risk was evaluated in an Aims
Materials and Methods
Increasing innovation in rapid prototyping (RP)
and additive manufacturing (AM), also known as 3D printing, is bringing
about major changes in translational surgical research. This review describes the current position in the use of additive
manufacturing in orthopaedic surgery. Cite this article:
Taper junctions between modular hip arthroplasty femoral heads and stems fail by wear or corrosion which can be caused by relative motion at their interface. Increasing the assembly force can reduce relative motion and corrosion but may also damage surrounding tissues. The purpose of this study was to determine the effects of increasing the impaction energy and the stiffness of the impactor tool on the stability of the taper junction and on the forces transmitted through the patient’s surrounding tissues. A commercially available impaction tool was modified to assemble components in the laboratory using impactor tips with varying stiffness at different applied energy levels. Springs were mounted below the modular components to represent the patient. The pull-off force of the head from the stem was measured to assess stability, and the displacement of the springs was measured to assess the force transmitted to the patient’s tissues.Objectives
Methods
Recently, there has been considerable interest in quantifying
the associations between bony abnormalities around and in the hip
joint and osteoarthritis (OA). Our aim was to investigate the relationships
between acetabular undercoverage, acetabular overcoverage, and femoroacetabular
impingement (FAI) with OA of the hip, which currently remain controversial. A total of 545 cadaveric skeletons (1090 hips) from the Hamann-Todd
osteological collection were obtained. Femoral head volume (FHV),
acetabular volume (AV), the FHV/AV ratio, acetabular version, alpha
angle and anterior femoral neck offset (AFNO) were measured. A validated
grading system was used to quantify OA of the hip as minimal, moderate,
or severe. Multiple linear and multinomial logistic regression were
used to determine the factors that correlated independently with
the FHV, AV, and the FHV/AV ratio. Aims
Materials and Methods
External fixators are the traditional fixation method of choice for contaminated open fractures. However, patient acceptance is low due to the high profile and therefore physical burden of the constructs. An externalised locking compression plate is a low profile alternative. However, the biomechanical differences have not been assessed. The objective of this study was to evaluate the axial and torsional stiffness of the externalised titanium locking compression plate (ET-LCP), the externalised stainless steel locking compression plate (ESS-LCP) and the unilateral external fixator (UEF). A fracture gap model was created to simulate comminuted mid-shaft tibia fractures using synthetic composite bones. Fifteen constructs were stabilised with ET-LCP, ESS-LCP or UEF (five constructs each). The constructs were loaded under both axial and torsional directions to determine construct stiffness.Objectives
Methods
Joint replacement of the hip and knee remain
very satisfactory operations. They are, however, expensive. The
actual manufacturing of the implant represents only 30% of the final
cost, while sales and marketing represent 40%. Recently, the patents
on many well established and successful implants have expired. Companies
have started producing and distributing implants that purport to
replicate existing implants with good long-term results. The aims of this paper are to assess the legality, the monitoring
and cost saving implications of such generic implants. We also assess
how this might affect the traditional orthopaedic implant companies. Cite this article:
Total hip replacement for high dislocation of the hip joint remains technically difficult in terms of preparation of the true acetabulum and restoration of leg length. We describe our experience of cementless total hip replacement combined with a subtrochanteric femoral shortening osteotomy in 20 hips with Crowe grade IV dislocation with a mean follow-up of 8.1 years (4 to 11.5). There was one man and 17 women with a mean age of 55 years (44 to 69) at the time of the operation. After placment of the acetabular component at the site of the natural acetabulum, a cementless porous-coated cylindrical femoral component was implanted following a subtrochanteric femoral shortening osteotomy. The mean Japanese Orthopedic Association hip score improved from a mean of 38 (22 to 62) to a mean of 83 points (55 to 98) at the final follow-up. The mean lengthening of the leg was 14.8 mm (−9 to 34) in patients with iliofemoral osteoarthritis and 35.3 mm (15 to 51) in patients with no arthritic changes. No nerve palsy was observed. Total hip replacement combined with subtrochanteric shortening femoral osteotomy in this situation is beneficial in avoiding nerve injury and still permits valuable improvement in inequality of leg length.
Interfacial defects between the cement mantle and a hip implant may arise from constrained shrinkage of the cement or from air introduced during insertion of the stem. Shrinkage-induced interfacial porosity consists of small pores randomly located around the stem, whereas introduced interfacial gaps are large, individual and less uniformly distributed areas of stem-cement separation. Using a validated CT-based technique, we investigated the extent, morphology and distribution of interfacial gaps for two types of stem, the Charnley-Kerboul and the Lubinus SPII, and for two techniques of implantation, line-to-line and undersized. The interfacial gaps were variable and involved a mean of 6.43% (
There are many methods for analysing wear volume in failed polyethylene acetabular components. We compared a radiological technique with three recognised We tested 18 ultra-high-molecular-weight polyethylene acetabular components revised for wear and aseptic loosening, of which 13 had pre-revision radiographs, from which the wear volume was calculated based upon the linear wear. We used a shadowgraph technique on silicone casts of all of the retrievals and a coordinate measuring method on the components directly. For these techniques, the wear vector was calculated for each component and the wear volume extrapolated using mathematical equations. The volumetric wear was also measured directly using a fluid-displacement method. The results of each technique were compared. The series had high wear volumes (mean 1385 mm3; 730 to 1850) and high wear rates (mean 205 mm3/year; 92 to 363). There were wide variations in the measurements of wear volume between the radiological and the other techniques. Radiograph-derived wear volume correlated poorly with that of the fluid-displacement method, co-ordinate measuring method and shadowgraph methods, becoming less accurate as the wear increased. The mean overestimation in radiological wear volume was 47.7% of the fluid-displacement method wear volume. Fluid-displacement method, coordinate measuring method and shadowgraph determinations of wear volume were all better than that of the radiograph-derived linear measurements since they took into account the direction of wear. However, only radiological techniques can be used Interpretation of radiological measurements of acetabular wear must be done judiciously in the clinical setting.
We undertook a review of the literature relating to the two basic stem designs in use in cemented hip replacement, namely loaded tapers or force-closed femoral stems, and the composite beam or shape-closed designs. The associated stem fixation theory as understood from It is clear that both design principles are capable of producing successful long-term results, providing that their specific requirements of stem metallurgy, shape and surface finish, preparation of the bone and handling of the cement are observed.
Using a modern cementing technique, we implanted 22 stereolithographic polymeric