Functional alignment (FA) in total knee arthroplasty (TKA) aims to achieve balanced gaps by adjusting implant positioning while minimizing changes to constitutional joint line obliquity (JLO). Although FA uses kinematic alignment (KA) as a starting point, the final implant positions can vary significantly between these two approaches. This study used the Coronal Plane Alignment of the Knee (CPAK) classification to compare differences between KA and final FA positions. A retrospective analysis compared pre-resection and post-implantation alignments in 2,116 robotic-assisted FA TKAs. The lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) were measured to determine the arithmetic hip-knee-ankle angle (aHKA = MPTA – LDFA), JLO (JLO = MPTA + LDFA), and CPAK type. The primary outcome was the proportion of knees that varied ≤ 2° for aHKA and ≤ 3° for JLO from their KA to FA positions, and direction and magnitude of those changes per CPAK phenotype. Secondary outcomes included proportion of knees that maintained their CPAK phenotype, and differences between sexes.Aims
Methods
Intraoperative pressure sensors allow surgeons to quantify soft-tissue balance during total knee arthroplasty (TKA). The aim of this study was to determine whether using sensors to achieve soft-tissue balance was more effective than manual balancing in improving outcomes in TKA. A multicentre randomized trial compared the outcomes of sensor balancing (SB) with manual balancing (MB) in 250 patients (285 TKAs). The primary outcome measure was the mean difference in the four Knee injury and Osteoarthritis Outcome Score subscales (ΔKOOS4) in the two groups, comparing the preoperative and two-year scores. Secondary outcomes included intraoperative balance data, additional patient-reported outcome measures (PROMs), and functional measures.Aims
Methods
Joint registries classify all further arthroplasty procedures to a knee with an existing partial arthroplasty as revision surgery, regardless of the actual procedure performed. Relatively minor procedures, including bearing exchanges, are classified in the same way as major operations requiring augments and stems. A new classification system is proposed to acknowledge and describe the detail of these procedures, which has implications for risk, recovery, and health economics. Classification categories were proposed by a surgical consensus group, then ranked by patients, according to perceived invasiveness and implications for recovery. In round one, 26 revision cases were classified by the consensus group. Results were tested for inter-rater reliability. In round two, four additional cases were added for clarity. Round three repeated the survey one month later, subject to inter- and intrarater reliability testing. In round four, five additional expert partial knee arthroplasty surgeons were asked to classify the 30 cases according to the proposed revision partial knee classification (RPKC) system.Aims
Methods
There has been a recent resurgence in interest in combined partial knee arthroplasty (PKA) as an alternative to total knee arthroplasty (TKA). The varied terminology used to describe these procedures leads to confusion and ambiguity in communication between surgeons, allied health professionals, and patients. A standardized classification system is required for patient safety, accurate clinical record-keeping, clear communication, correct coding for appropriate remuneration, and joint registry data collection. An advanced PubMed search was conducted, using medical subject headings (MeSH) to identify terms and abbreviations used to describe knee arthroplasty procedures. The search related to TKA, unicompartmental (UKA), patellofemoral (PFA), and combined PKA procedures. Surveys were conducted of orthopaedic surgeons, trainees, and biomechanical engineers, who were asked which of the descriptive terms and abbreviations identified from the literature search they found most intuitive and appropriate to describe each procedure. The results were used to determine a popular consensus.Aims
Materials and Methods
We report the mid-term results of a new patellofemoral arthroplasty for established isolated patellofemoral arthritis. We have reviewed the experience of 109 consecutive patellofemoral resurfacing arthroplasties in 85 patients who were followed up for at least five years. The five-year survival rate, with revision as the endpoint, was 95.8% (95% confidence interval 91.8% to 99.8%). There were no cases of loosening of the prosthesis. At five years the median Bristol pain score improved from 15 of 40 points (interquartile range 5 to 20) pre-operatively, to 35 (interquartile range 20 to 40), the median Melbourne score from 10 of 30 points (interquartile range 6 to 15) to 25 (interquartile range 20 to 29), and the median Oxford score from 18 of 48 points (interquartile range 13 to 24) to 39 (interquartile range 24 to 45). Successful results, judged on a Bristol pain score of at least 20 at five years, occurred in 80% (66) of knees. The main complication was radiological progression of arthritis, which occurred in 25 patients (28%) and emphasises the importance of the careful selection of patients. These results give increased confidence in the use of patellofemoral arthroplasty.
The results of a cadaver dye-infusion experiment suggested that the hand has ten muscle compartments and that the volar interossei occupy a separate anatomical compartment from the adjacent dorsal interossei. This is not supported by clinical findings. With various minor modifications, we repeated the experiment, infusing Omnipaque into the second dorsal interosseus muscle of four cadaver hands. We used real-time CT imaging to monitor the spread of contrast medium and side-ported needles to measure compartmental pressures. In all four hands, the tissue barrier between dorsal and volar interossei became incompetent at pressures of less than 15 mmHg. Our data indicate that, although cadaver infusion studies can delineate potentially significant musculoskeletal barriers, their physiological relevance must be confirmed clinically.
The effect of calcaneal traction on the compartmental pressure in the legs of five individuals with tibial fractures was studied. Mean resting pressures without traction were found to be 31.9 mmHg for the deep posterior compartment and 27.0 mmHg for the anterior compartment. For each kilogram weight of traction applied the deep posterior pressure rose by 5.7 per cent of the resting value and the anterior pressure by 1.6 per cent. It is suggested that the weight of traction should be only sufficient to render the patient comfortable and maintain alignment of the limb. Excessive traction is likely to increase the risk of compartmental ischaemia. The application of six kilograms of traction would raise the mean resting pressure by 34 per cent from 31.9 to 42.7 mmHg.