Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Bone & Joint Research
Vol. 1, Issue 3 | Pages 31 - 35
1 Mar 2012
Fowler JR Kleiner MT Das R Gaughan JP Rehman S

Introduction. Negative pressure wound therapy (NPWT) and vessel loop assisted closure are two common methods used to assist with the closure of fasciotomy wounds. This retrospective review compares these two methods using a primary outcome measurement of skin graft requirement. Methods. A retrospective search was performed to identify patients who underwent fasciotomy at our institution. Patient demographics, location of the fasciotomy, type of assisted closure, injury characteristics, need for skin graft, length of stay and evidence of infection within 90 days were recorded. Results. A total of 56 patients met the inclusion criteria. Of these, 49 underwent vessel loop closure and seven underwent NPWT assisted closure. Patients who underwent NPWT assisted closure were at higher risk for requiring skin grafting than patients who underwent vessel loop closure, with an odds ratio of 5.9 (95% confidence interval 1.11 to 31.24). There was no difference in the rate of infection or length of stay between the two groups. Demographic factors such as age, gender, fracture mechanism, location of fasciotomy and presence of open fracture were not predictive of the need for skin grafting. Conclusion. This retrospective descriptive case series demonstrates an increased risk of skin grafting in patients who underwent fasciotomy and were treated with NPWT assisted wound closure. In our series, vessel loop closure was protective against the need for skin grafting. Due to the small sample size in the NPWT group, caution should be taken when generalising these results. Further research is needed to determine if NPWT assisted closure of fasciotomy wounds truly leads to an increased requirement for skin grafting, or if the vascular injury is the main risk factor


Bone & Joint Research
Vol. 1, Issue 11 | Pages 289 - 296
1 Nov 2012
Savaridas T Wallace RJ Muir AY Salter DM Simpson AHRW

Objectives

Small animal models of fracture repair primarily investigate indirect fracture healing via external callus formation. We present the first described rat model of direct fracture healing.

Methods

A rat tibial osteotomy was created and fixed with compression plating similar to that used in patients. The procedure was evaluated in 15 cadaver rats and then in vivo in ten Sprague-Dawley rats. Controls had osteotomies stabilised with a uniaxial external fixator that used the same surgical approach and relied on the same number and diameter of screw holes in bone.