Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Research
Vol. 1, Issue 9 | Pages 205 - 209
1 Sep 2012
Atrey A Morison Z Tosounidis T Tunggal J Waddell JP

We systematically reviewed the published literature on the complications of closing wedge high tibial osteotomy for the treatment of unicompartmental osteoarthritis of the knee. Publications were identified using the Cochrane Library, MEDLINE, EMBASE and CINAHL databases up to February 2012. We assessed randomised (RCTs), controlled group clinical (CCTs) trials, case series in publications associated with closing wedge osteotomy of the tibia in patients with osteoarthritis of the knee and finally a Cochrane review. Many of these trials included comparative studies (opening wedge versus closing wedge) and there was heterogeneity in the studies that prevented pooling of the results


Bone & Joint Research
Vol. 7, Issue 2 | Pages 166 - 172
1 Feb 2018
Bujnowski K Getgood A Leitch K Farr J Dunning C Burkhart TA

Aim

It has been suggested that the use of a pilot-hole may reduce the risk of fracture to the lateral cortex. Therefore the purpose of this study was to determine the effect of a pilot hole on the strains and occurrence of fractures at the lateral cortex during the opening of a high tibial osteotomy (HTO) and post-surgery loading.

Materials and Methods

A total of 14 cadaveric tibias were randomized to either a pilot hole (n = 7) or a no-hole (n = 7) condition. Lateral cortex strains were measured while the osteotomy was opened 9 mm and secured in place with a locking plate. The tibias were then subjected to an initial 800 N load that increased by 200 N every 5000 cycles, until failure or a maximum load of 2500 N.


Bone & Joint Research
Vol. 7, Issue 12 | Pages 639 - 649
1 Dec 2018
MacLeod AR Serrancoli G Fregly BJ Toms AD Gill HS

Objectives

Opening wedge high tibial osteotomy (HTO) is an established surgical procedure for the treatment of early-stage knee arthritis. Other than infection, the majority of complications are related to mechanical factors – in particular, stimulation of healing at the osteotomy site. This study used finite element (FE) analysis to investigate the effect of plate design and bridging span on interfragmentary movement (IFM) and the influence of fracture healing on plate stress and potential failure.

Materials and Methods

A 10° opening wedge HTO was created in a composite tibia. Imaging and strain gauge data were used to create and validate FE models. Models of an intact tibia and a tibia implanted with a custom HTO plate using two different bridging spans were validated against experimental data. Physiological muscle forces and different stages of osteotomy gap healing simulating up to six weeks postoperatively were then incorporated. Predictions of plate stress and IFM for the custom plate were compared against predictions for an industry standard plate (TomoFix).