Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Bone & Joint Research
Vol. 11, Issue 11 | Pages 803 - 813
1 Nov 2022
Guan X Gong X Jiao ZY Cao HY Liu S Lin C Huang X Lan H Ma L Xu B

Aims. The involvement of cyclin D1 in the proliferation of microglia, and the generation and maintenance of bone cancer pain (BCP), have not yet been clarified. We investigated the expression of microglia and cyclin D1, and the influences of cyclin D1 on pain threshold. Methods. Female Sprague Dawley (SD) rats were used to establish a rat model of BCP, and the messenger RNA (mRNA) and protein expression of ionized calcium binding adaptor molecule 1 (IBA1) and cyclin D1 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blot, respectively. The proliferation of spinal microglia was detected by immunohistochemistry. The pain behaviour test was assessed by quantification of spontaneous flinches, limb use, and guarding during forced ambulation, mechanical paw withdrawal threshold, and thermal paw withdrawal latency. Results. IBA1 and cyclin D1 in the ipsilateral spinal horn increased in a time-dependent fashion. Spinal microglia proliferated in BCP rats. The microglia inhibitor minocycline attenuated the pain behaviour in BCP rats. The cyclin-dependent kinase inhibitor flavopiridol inhibited the proliferation of spinal microglia, and was associated with an improvement in pain behaviour in BCP rats. Conclusion. Our results revealed that the inhibition of spinal microglial proliferation was associated with a decrease in pain behaviour in a rat model of BCP. Cyclin D1 acts as a key regulator of the proliferation of spinal microglia in a rat model of BCP. Disruption of cyclin D1, the restriction-point control of cell cycle, inhibited the proliferation of microglia and attenuated the pain behaviours in BCP rats. Cyclin D1 and the proliferation of spinal microglia may be potential targets for the clinical treatment of BCP. Cite this article: Bone Joint Res 2022;11(11):803–813


Bone & Joint Research
Vol. 8, Issue 8 | Pages 405 - 413
1 Aug 2019
Huang J Bao X Xia W Zhu L Zhang J Ma J Jiang N Yang J Chen Q Jing T Liu J Ma D Xu G

Objectives. X-linked hypophosphataemic rickets (XLHR) is a disease of impaired bone mineralization characterized by hypophosphataemia caused by renal phosphate wasting. The main clinical manifestations of the disorder are O-shaped legs, X-shaped legs, delayed growth, and bone pain. XLHR is the most common inheritable form of rickets, with an incidence of 1/20 000 in humans. It accounts for approximately 80% of familial cases of hypophosphataemia and serves as the prototype of defective tubular phosphate (PO4. 3+. ) transport, due to extra renal defects resulting in unregulated FGF23 activity. XLHR is caused by loss-of-function mutations in the PHEX gene. The aim of this research was to identify the genetic defect responsible for familial hypophosphataemic rickets in a four-generation Chinese Han pedigree and to analyze the function of this mutation. Methods. The genome DNA samples of all members in the pedigree were extracted from whole blood. We sequenced all exons of the PHEX and FGF23 genes, as well as the adjacent splice site sequence with Sanger sequencing. Next, we analyzed the de novo mutation c.1692 del A of the PHEX gene with an online digital service and investigated the mutant PHEX with SWISS-MODEL, immunofluorescence, and protein stability detection. Results. Through Sanger sequencing, we found a de novo mutation, c.1692 del A, in exon 16 of the PHEX gene in this pedigree. This mutation can make the PHEX protein become unstable and decay rapidly, which results in familial XLHR. Conclusion. We have found a de novo loss-of-function mutation, c.1692 del A, in exon 16 of the PHEX gene that can cause XLHR. Cite this article: J. Huang, X. Bao, W. Xia, L. Zhu, J. Zhang, J. Ma, N. Jiang, J. Yang, Q. Chen, T. Jing, J. Liu, D. Ma, G. Xu. Functional analysis of a de novo mutation c.1692 del A of the PHEX gene in a Chinese family with X-linked hypophosphataemic rickets. Bone Joint Res 2019;8:405–413. DOI: 10.1302/2046-3758.88.BJR-2018-0276.R1