External fixators are the traditional fixation method of choice for contaminated open fractures. However, patient acceptance is low due to the high profile and therefore physical burden of the constructs. An externalised locking compression plate is a low profile alternative. However, the biomechanical differences have not been assessed. The objective of this study was to evaluate the axial and torsional stiffness of the externalised titanium locking compression plate (ET-LCP), the externalised stainless steel locking compression plate (ESS-LCP) and the unilateral external fixator (UEF). A fracture gap model was created to simulate comminuted mid-shaft tibia fractures using synthetic composite bones. Fifteen constructs were stabilised with ET-LCP, ESS-LCP or UEF (five constructs each). The constructs were loaded under both axial and torsional directions to determine construct stiffness.Objectives
Methods
Current studies on the additional benefit of using computed tomography
(CT) in order to evaluate the surgeons’ agreement on treatment plans
for fracture are inconsistent. This inconsistency can be explained
by a methodological phenomenon called ‘spectrum bias’, defined as
the bias inherent when investigators choose a population lacking
therapeutic uncertainty for evaluation. The aim of the study is
to determine the influence of spectrum bias on the intra-observer
agreement of treatment plans for fractures of the distal radius. Four surgeons evaluated 51 patients with displaced fractures
of the distal radius at four time points: T1 and T2: conventional
radiographs; T3 and T4: radiographs and additional CT scan (radiograph
and CT). Choice of treatment plan (operative or non-operative) and
therapeutic certainty (five-point scale: very uncertain to very
certain) were rated. To determine the influence of spectrum bias,
the intra-observer agreement was analysed, using Kappa statistics,
for each degree of therapeutic certainty. Objectives
Methods