header advert
Results 1 - 20 of 21
Results per page:
Bone & Joint Research
Vol. 13, Issue 5 | Pages 201 - 213
1 May 2024
Hamoodi Z Gehringer CK Bull LM Hughes T Kearsley-Fleet L Sergeant JC Watts AC

Aims. The aims of this study were to identify and evaluate the current literature examining the prognostic factors which are associated with failure of total elbow arthroplasty (TEA). Methods. Electronic literature searches were conducted using MEDLINE, Embase, PubMed, and Cochrane. All studies reporting prognostic estimates for factors associated with the revision of a primary TEA were included. The risk of bias was assessed using the Quality In Prognosis Studies (QUIPS) tool, and the quality of evidence was assessed using the modified Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) framework. Due to low quality of the evidence and the heterogeneous nature of the studies, a narrative synthesis was used. Results. A total of 19 studies met the inclusion criteria, investigating 28 possible prognostic factors. Most QUIPS domains (84%) were rated as moderate to high risk of bias. The quality of the evidence was low or very low for all prognostic factors. In low-quality evidence, prognostic factors with consistent associations with failure of TEA in more than one study were: the sequelae of trauma leading to TEA, either independently or combined with acute trauma, and male sex. Several other studies investigating sex reported no association. The evidence for other factors was of very low quality and mostly involved exploratory studies. Conclusion. The current evidence investigating the prognostic factors associated with failure of TEA is of low or very low quality, and studies generally have a moderate to high risk of bias. Prognostic factors are subject to uncertainty, should be interpreted with caution, and are of little clinical value. Higher-quality evidence is required to determine robust prognostic factors for failure of TEA. Cite this article: Bone Joint Res 2024;13(5):201–213


Bone & Joint Research
Vol. 12, Issue 4 | Pages 231 - 244
1 Apr 2023
Lukas KJ Verhaegen JCF Livock H Kowalski E Phan P Grammatopoulos G

Aims. Spinopelvic characteristics influence the hip’s biomechanical behaviour. However, to date there is little knowledge defining what ‘normal’ spinopelvic characteristics are. This study aims to determine how static spinopelvic characteristics change with age and ethnicity among asymptomatic, healthy individuals. Methods. This systematic review followed the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines to identify English studies, including ≥ 18-year-old participants, without evidence of hip or spine pathology or a history of previous surgery or interventional treatment, documenting lumbar lordosis (LL), sacral slope (SS), pelvic tilt (PT), and pelvic incidence (PI). From a total of 2,543 articles retrieved after the initial database search, 61 articles were eventually selected for data extraction. Results. When all ethnicities were combined the mean values for LL, SS, PT, and PI were: 47.4° (SD 11.0°), 35.8° (SD 7.8°), 14.0° (SD 7.2°), and 48.8° (SD 10°), respectively. LL, SS, and PT had statistically significant (p < 0.001) changes per decade at: −1.5° (SD 0.3°), −1.3° (SD 0.3°), and 1.4° (SD 0.1°). Asian populations had the largest age-dependent change in LL, SS, and PT compared to any other ethnicity per decade at: −1.3° (SD 0.3°) to −0.5° (SD 1.3°), –1.2° (SD 0.2°) to −0.3° (SD 0.3°), and 1.7° (SD 0.2°) versus 1.1° (SD 0.1°), respectively. Conclusion. Ageing alters the orientation between the spine and pelvis, causing LL, SS, and PT to modify their orientations in a compensatory mechanism to maintain sagittal alignment for balance when standing. Asian populations have the largest degree of age-dependent change to their spinopelvic parameters compared to any other ethnicity, likely due to their lower PI. Cite this article: Bone Joint Res 2023;12(4):231–244


Bone & Joint Research
Vol. 10, Issue 7 | Pages 445 - 458
7 Jul 2021
Zhu S Zhang X Chen X Wang Y Li S Qian W

Aims. The value of core decompression (CD) in the treatment of osteonecrosis of the femoral head (ONFH) remains controversial. We conducted a systematic review and meta-analysis to evaluate whether CD combined with other treatments could improve the clinical and radiological outcomes of ONFH patients compared with CD alone. Methods. We searched the PubMed, Embase, Web of Science, and Cochrane Library databases until June 2020. All randomized controlled trials (RCTs) and clinical controlled trials (CCTs) comparing CD alone and CD combined with other measures (CD + cell therapy, CD + bone grafting, CD + porous tantalum rod, etc.) for the treatment of ONFH were considered eligible for inclusion. The primary outcomes of interest were Harris Hip Score (HHS), ONFH stage progression, structural failure (collapse) of the femoral head, and conversion to total hip arthroplasty (THA). The pooled data were analyzed using Review Manager 5.3 software. Results. A total of 20 studies with 2,123 hips were included (CD alone = 768, CD combined with other treatments = 1,355). The combination of CD with other therapeutic interventions resulted in a higher HHS (mean difference (MD) = 6.46, 95% confidence interval (CI) = 2.10 to 10.83, p = 0.004) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score (MD = −10.92, 95% CI = -21.41 to -4.03, p = 0.040) and a lower visual analogue scale (VAS) score (MD = −0.99, 95% CI = -1.56 to -0.42, p < 0.001) than CD alone. For the rates of disease stage progression, 91 (20%) progressed in the intervention group compared to 146 (36%) in the control group (odds ratio (OR) = 0.32, 95% CI = 0.16 to 0.64, p = 0.001). In addition, the intervention group had a more significant advantage in delaying femoral head progression to the collapsed stage (OR = 0.32, 95% CI = 0.17 to 0.61, p < 0.001) and reducing the odds of conversion to THA (OR = 0.35, 95% CI = 0.23 to 0.55, p < 0.001) compared to the control group. There were no serious adverse events in either group. Subgroup analysis showed that the addition of cell therapy significantly improved clinical and radiological outcomes compared to CD alone, and this approach appeared to be more effective than other therapies, particularly in precollapse (stage I to II) ONFH patients. Conclusion. There was marked heterogeneity in the studies. There is a trend towards improved clinical outcomes with the addition of stem cell therapy to CD. Cite this article: Bone Joint Res 2021;10(7):445–458


Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims

Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models.

Methods

Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted.


Bone & Joint Research
Vol. 12, Issue 2 | Pages 138 - 146
14 Feb 2023
Aquilina AL Claireaux H Aquilina CO Tutton E Fitzpatrick R Costa ML Griffin XL

Aims

Open lower limb fracture is a life-changing injury affecting 11.5 per 100,000 adults each year, and causes significant morbidity and resource demand on trauma infrastructures. This study aims to identify what, and how, outcomes have been reported for people following open lower limb fracture over ten years.

Methods

Systematic literature searches identified all clinical studies reporting outcomes for adults following open lower limb fracture between January 2009 and July 2019. All outcomes and outcome measurement instruments were extracted verbatim. An iterative process was used to group outcome terms under standardized outcome headings categorized using an outcome taxonomy.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 536 - 545
8 Sep 2023
Luo P Yuan Q Yang M Wan X Xu P

Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA.

Cite this article: Bone Joint Res 2023;12(9):536–545.


Bone & Joint Research
Vol. 12, Issue 12 | Pages 712 - 721
4 Dec 2023
Dantas P Gonçalves SR Grenho A Mascarenhas V Martins J Tavares da Silva M Gonçalves SB Guimarães Consciência J

Aims

Research on hip biomechanics has analyzed femoroacetabular contact pressures and forces in distinct hip conditions, with different procedures, and used diverse loading and testing conditions. The aim of this scoping review was to identify and summarize the available evidence in the literature for hip contact pressures and force in cadaver and in vivo studies, and how joint loading, labral status, and femoral and acetabular morphology can affect these biomechanical parameters.

Methods

We used the PRISMA extension for scoping reviews for this literature search in three databases. After screening, 16 studies were included for the final analysis.


Bone & Joint Research
Vol. 9, Issue 12 | Pages 884 - 893
1 Dec 2020
Guerado E Cano JR Pons-Palliser J

Aims. A systematic literature review focusing on how long before surgery concurrent viral or bacterial infections (respiratory and urinary infections) should be treated in hip fracture patients, and if there is evidence for delaying this surgery. Methods. A total of 11 databases were examined using the COre, Standard, Ideal (COSI) protocol. Bibliographic searches (no chronological or linguistic restriction) were conducted using, among other methods, the Patient, Intervention, Comparison, Outcome (PICO) template. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for flow diagram and checklist. Final reading of the complete texts was conducted in English, French, and Spanish. Classification of papers was completed within five levels of evidence (LE). Results. There were a total of 621 hits (526 COre; 95 Standard, Ideal) for screening identification, and 107 records were screened. Overall 67 full-text articles were assessed for eligibility, and 21 articles were included for the study question. A total of 46 full-text articles were excluded with reasons. No studies could be included in quantitative synthesis (meta-analyses), and there were many confounding variables including surgeons’ experience, prosthesis models used, and surgical technique. Conclusion. Patients with hip fracture and with a viral infection in the upper respiratory tract or without major clinical symptoms should be operated on as soon as possible (LE: I-III). There is no evidence that patients with coronavirus disease 2019 (COVID-19) should be treated differently. In relation to pneumonia, its prevention is a major issue. Antibiotics should be administered if surgery is delayed by > 72 hours or if bacterial infection is present in the lower respiratory tract (LE: III-V). In patients with hip fracture and urinary tract infection (UTI), delaying surgery may provoke further complications (LE: I). However, diabetic or immunocompromised patients may benefit from immediate antibiotic treatment. Cite this article: Bone Joint Res 2020;9(12):884–893


Bone & Joint Research
Vol. 9, Issue 7 | Pages 351 - 359
1 Jul 2020
Fitzgerald J

The ability to edit DNA at the nucleotide level using clustered regularly interspaced short palindromic repeats (CRISPR) systems is a relatively new investigative tool that is revolutionizing the analysis of many aspects of human health and disease, including orthopaedic disease. CRISPR, adapted for mammalian cell genome editing from a bacterial defence system, has been shown to be a flexible, programmable, scalable, and easy-to-use gene editing tool. Recent improvements increase the functionality of CRISPR through the engineering of specific elements of CRISPR systems, the discovery of new, naturally occurring CRISPR molecules, and modifications that take CRISPR beyond gene editing to the regulation of gene transcription and the manipulation of RNA. Here, the basics of CRISPR genome editing will be reviewed, including a description of how it has transformed some aspects of molecular musculoskeletal research, and will conclude by speculating what the future holds for the use of CRISPR-related treatments and therapies in clinical orthopaedic practice. Cite this article: Bone Joint Res 2020;9(7):351–359


Bone & Joint Research
Vol. 9, Issue 7 | Pages 368 - 385
1 Jul 2020
Chow SK Chim Y Wang J Wong RM Choy VM Cheung W

A balanced inflammatory response is important for successful fracture healing. The response of osteoporotic fracture healing is deranged and an altered inflammatory response can be one underlying cause. The objectives of this review were to compare the inflammatory responses between normal and osteoporotic fractures and to examine the potential effects on different healing outcomes. A systematic literature search was conducted with relevant keywords in PubMed, Embase, and Web of Science independently. Original preclinical studies and clinical studies involving the investigation of inflammatory response in fracture healing in ovariectomized (OVX) animals or osteoporotic/elderly patients with available full text and written in English were included. In total, 14 articles were selected. Various inflammatory factors were reported; of those tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 are two commonly studied markers. Preclinical studies showed that OVX animals generally demonstrated higher systemic inflammatory response and poorer healing outcomes compared to normal controls (SHAM). However, it is inconclusive if the local inflammatory response is higher or lower in OVX animals. As for clinical studies, they mainly examine the temporal changes of the inflammatory stage or perform comparison between osteoporotic/fragility fracture patients and normal subjects without fracture. Our review of these studies emphasizes the lack of understanding that inflammation plays in the altered fracture healing response of osteoporotic/elderly patients. Taken together, it is clear that additional studies, preclinical and clinical, are required to dissect the regulatory role of inflammatory response in osteoporotic fracture healing. Cite this article: Bone Joint Res 2020;9(7):368–385


Bone & Joint Research
Vol. 10, Issue 8 | Pages 474 - 487
2 Aug 2021
Duan M Wang Q Liu Y Xie J

Transforming growth factor-beta2 (TGF-β2) is recognized as a versatile cytokine that plays a vital role in regulation of joint development, homeostasis, and diseases, but its role as a biological mechanism is understood far less than that of its counterpart, TGF-β1. Cartilage as a load-resisting structure in vertebrates however displays a fragile performance when any tissue disturbance occurs, due to its lack of blood vessels, nerves, and lymphatics. Recent reports have indicated that TGF-β2 is involved in the physiological processes of chondrocytes such as proliferation, differentiation, migration, and apoptosis, and the pathological progress of cartilage such as osteoarthritis (OA) and rheumatoid arthritis (RA). TGF-β2 also shows its potent capacity in the repair of cartilage defects by recruiting autologous mesenchymal stem cells and promoting secretion of other growth factor clusters. In addition, some pioneering studies have already considered it as a potential target in the treatment of OA and RA. This article aims to summarize the current progress of TGF-β2 in cartilage development and diseases, which might provide new cues for remodelling of cartilage defect and intervention of cartilage diseases.


Bone & Joint Research
Vol. 9, Issue 3 | Pages 108 - 119
1 Mar 2020
Akhbari P Karamchandani U Jaggard MKJ Graça G Bhattacharya R Lindon JC Williams HRT Gupte CM

Aims. Metabolic profiling is a top-down method of analysis looking at metabolites, which are the intermediate or end products of various cellular pathways. Our primary objective was to perform a systematic review of the published literature to identify metabolites in human synovial fluid (HSF), which have been categorized by metabolic profiling techniques. A secondary objective was to identify any metabolites that may represent potential biomarkers of orthopaedic disease processes. Methods. A systematic review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines using the MEDLINE, Embase, PubMed, and Cochrane databases. Studies included were case series, case control series, and cohort studies looking specifically at HSF. Results. The primary analysis, which pooled the results from 17 published studies and four meeting abstracts, identified over 200 metabolites. Seven of these studies (six published studies, one meeting abstract) had asymptomatic control groups and collectively suggested 26 putative biomarkers in osteoarthritis, inflammatory arthropathies, and trauma. These can broadly be categorized into amino acids plus related metabolites, fatty acids, ketones, and sugars. Conclusion. The role of metabolic profiling in orthopaedics is fast evolving with many metabolites already identified in a variety of pathologies. However, these results need to be interpreted with caution due to the presence of multiple confounding factors in many of the studies. Future research should include largescale epidemiological metabolic profiling studies incorporating various confounding factors with appropriate statistical analysis to account for multiple testing of the data. Cite this article:Bone Joint Res. 2020;9(3):108–119


Bone & Joint Research
Vol. 9, Issue 1 | Pages 1 - 14
1 Jan 2020
Stewart S Darwood A Masouros S Higgins C Ramasamy A

Bone is one of the most highly adaptive tissues in the body, possessing the capability to alter its morphology and function in response to stimuli in its surrounding environment. The ability of bone to sense and convert external mechanical stimuli into a biochemical response, which ultimately alters the phenotype and function of the cell, is described as mechanotransduction. This review aims to describe the fundamental physiology and biomechanisms that occur to induce osteogenic adaptation of a cell following application of a physical stimulus. Considerable developments have been made in recent years in our understanding of how cells orchestrate this complex interplay of processes, and have become the focus of research in osteogenesis. We will discuss current areas of preclinical and clinical research exploring the harnessing of mechanotransductive properties of cells and applying them therapeutically, both in the context of fracture healing and de novo bone formation in situations such as nonunion. Cite this article: Bone Joint Res 2019;9(1):1–14


Bone & Joint Research
Vol. 10, Issue 3 | Pages 203 - 217
1 Mar 2021
Wang Y Yin M Zhu S Chen X Zhou H Qian W

Patient-reported outcome measures (PROMs) are being used increasingly in total knee arthroplasty (TKA). We conducted a systematic review aimed at identifying psychometrically sound PROMs by appraising their measurement properties. Studies concerning the development and/or evaluation of the measurement properties of PROMs used in a TKA population were systematically retrieved via PubMed, Web of Science, Embase, and Scopus. Ratings for methodological quality and measurement properties were conducted according to updated COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) methodology. Of the 155 articles on 34 instruments included, nine PROMs met the minimum requirements for psychometric validation and can be recommended to use as measures of TKA outcome: Oxford Knee Score (OKS); OKS–Activity and Participation Questionnaire (OKS-APQ); 12-item short form Knee Injury and Osteoarthritis Outcome (KOOS-12); KOOS Physical function Short form (KOOS-PS); Western Ontario and McMaster Universities Arthritis Index-Total Knee Replacement function short form (WOMAC-TKR); Lower Extremity Functional Scale (LEFS); Forgotten Joint Score (FJS); Patient’s Knee Implant Performance (PKIP); and University of California Los Angeles (UCLA) activity score. The pain and function subscales in WOMAC, as well as the pain, function, and quality of life subscales in KOOS, were validated psychometrically as standalone subscales instead of as whole instruments. However, none of the included PROMs have been validated for all measurement properties. Thus, further studies are still warranted to evaluate those PROMs. Use of the other 25 scales and subscales should be tempered until further studies validate their measurement properties.

Cite this article: Bone Joint Res 2021;10(3):203–217.


Bone & Joint Research
Vol. 10, Issue 2 | Pages 122 - 133
1 Feb 2021
He CP Jiang XC Chen C Zhang HB Cao WD Wu Q Ma C

Osteoarthritis (OA), one of the most common motor system disorders, is a degenerative disease involving progressive joint destruction caused by a variety of factors. At present, OA has become the fourth most common cause of disability in the world. However, the pathogenesis of OA is complex and has not yet been clarified. Long non-coding RNA (lncRNA) refers to a group of RNAs more than 200 nucleotides in length with limited protein-coding potential, which have a wide range of biological functions including regulating transcriptional patterns and protein activity, as well as binding to form endogenous small interference RNAs (siRNAs) and natural microRNA (miRNA) molecular sponges. In recent years, a large number of lncRNAs have been found to be differentially expressed in a variety of pathological processes of OA, including extracellular matrix (ECM) degradation, synovial inflammation, chondrocyte apoptosis, and angiogenesis. Obviously, lncRNAs play important roles in regulating gene expression, maintaining the phenotype of cartilage and synovial cells, and the stability of the intra-articular environment. This article reviews the results of the latest research into the role of lncRNAs in a variety of pathological processes of OA, in order to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment.

Cite this article: Bone Joint Res 2021;10(2):122–133.


Bone & Joint Research
Vol. 10, Issue 1 | Pages 51 - 59
1 Jan 2021
Li J Ho WTP Liu C Chow SK Ip M Yu J Wong HS Cheung W Sung JJY Wong RMY

Aims

The effect of the gut microbiota (GM) and its metabolite on bone health is termed the gut-bone axis. Multiple studies have elucidated the mechanisms but findings vary greatly. A systematic review was performed to analyze current animal models and explore the effect of GM on bone.

Methods

Literature search was performed on PubMed and Embase databases. Information on the types and strains of animals, induction of osteoporosis, intervention strategies, determination of GM, assessment on bone mineral density (BMD) and bone quality, and key findings were extracted.


Bone & Joint Research
Vol. 9, Issue 10 | Pages 701 - 708
1 Oct 2020
Chen X Li H Zhu S Wang Y Qian W

Aims

The diagnosis of periprosthetic joint infection (PJI) has always been challenging. Recently, D-dimer has become a promising biomarker in diagnosing PJI. However, there is controversy regarding its diagnostic value. We aim to investigate the diagnostic value of D-dimer in comparison to ESR and CRP.

Methods

PubMed, Embase, and the Cochrane Library were searched in February 2020 to identify articles reporting on the diagnostic value of D-dimer on PJI. Pooled analysis was conducted to investigate the diagnostic value of D-dimer, CRP, and ESR.


Bone & Joint Research
Vol. 8, Issue 2 | Pages 73 - 80
1 Feb 2019
Zhang J Hao X Yin M Xu T Guo F

Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with limited coding potential, which have emerged as novel regulators in many biological and pathological processes, including growth, development, and oncogenesis. Accumulating evidence suggests that lncRNAs have a special role in the osteogenic differentiation of various types of cell, including stem cells from different sources such as embryo, bone marrow, adipose tissue and periodontal ligaments, and induced pluripotent stem cells. Involved in complex mechanisms, lncRNAs regulate osteogenic markers and key regulators and pathways in osteogenic differentiation. In this review, we provide insights into the functions and molecular mechanisms of lncRNAs in osteogenesis and highlight their emerging roles and clinical value in regenerative medicine and osteogenesis-related diseases. Cite this article: J. Zhang, X. Hao, M. Yin, T. Xu, F. Guo. Long non-coding RNA in osteogenesis: A new world to be explored. Bone Joint Res 2019;8:73–80. DOI: 10.1302/2046-3758.82.BJR-2018-0074.R1


Bone & Joint Research
Vol. 9, Issue 3 | Pages 120 - 129
1 Mar 2020
Guofeng C Chen Y Rong W Ruiyu L Kunzheng W

Aims

Patients with metabolic syndrome (MetS) are known to be at increased risk of postoperative complications, but it is unclear whether MetS is also associated with complications after total hip arthroplasty (THA) or total knee arthroplasty (TKA). Here, we perform a systematic review and meta-analysis linking MetS to postoperative complications in THA and TKA.

Methods

The PubMed, OVID, and ScienceDirect databases were comprehensively searched and studies were selected and analyzed according to the guidelines of the Meta-analysis of Observational Studies in Epidemiology (MOOSE). We assessed the methodological quality of each study using the Newcastle-Ottawa Scale (NOS), and we evaluated the quality of evidence using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Data were extracted and meta-analyzed or qualitatively synthesized for several outcomes.


Bone & Joint Research
Vol. 6, Issue 12 | Pages 656 - 664
1 Dec 2017
Morita W Dakin SG Snelling SJB Carr AJ

Objectives. Emerging evidence indicates that tendon disease is an active process with inflammation that is critical to disease onset and progression. However, the key cytokines responsible for driving and sustaining inflammation have not been identified. Methods. We performed a systematic review of the literature using MEDLINE (U.S. National Library of Medicine, Bethesda, Maryland) in March 2017. Studies reporting the expression of interleukins (ILs), tumour necrosis factor alpha (TNF-α) and interferon gamma in diseased human tendon tissues, and animal models of tendon injury or exercise in comparison with healthy control tissues were included. Results. IL-1β, IL-6, IL-10, and TNF-α are the cytokines that have been most frequently investigated. In clinical samples of tendinopathy and tendon tears, the expression of TNF-α tended not to change but IL-6 increased in tears. Healthy human tendons showed increased IL-6 expression after exercise; however, IL-10 remained unchanged. Animal tendon injury models showed that IL-1β, IL-6, and TNF-α tend to increase from the early phase of tendon healing. In animal exercise studies, IL-1β expression showed a tendency to increase at the early stage after exercise, but IL-10 expression remained unchanged with exercise. Conclusions. This review highlights the roles of IL-1β, IL-6, IL-10, and TNF-α in the development of tendon disease, during tendon healing, and in response to exercise. However, there is evidence accumulating that suggests that other cytokines are also contributing to tendon inflammatory processes. Further work with hypothesis-free methods is warranted in order to identify the key cytokines, with subsequent mechanistic and interaction studies to elucidate their roles in tendon disease development. Cite this article: W. Morita, S. G. Dakin, S. J. B. Snelling, A. J. Carr. Cytokines in tendon disease: A Systematic Review. Bone Joint Res 2017;6:656–664. DOI: 10.1302/2046-3758.612.BJR-2017-0112.R1