Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remains a challenge. A novel surgical technique named ‘tibial cortex transverse transport’ (TTT) has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In the present study, we explored the potential biological mechanisms of TTT surgery using various techniques in a rat TTT animal model. A novel rat model of TTT was established with a designed external fixator, and effects on wound healing were investigated. Laser speckle perfusion imaging, vessel perfusion, histology, and immunohistochemistry were used to evaluate the wound healing processes.Aims
Methods
Introduction. The aetiology of hallux valgus is almost certainly multifactoral.
The biomechanics of the first ray is a common factor to most. There
is very little literature examining the anatomy of the proximal
metatarsal articular surface and its relationship to hallux valgus
deformity. Methods. We examined 42 feet from 23 specimens in this anatomical dissection
study. Results. This analysis revealed three distinct articular subtypes. Type
1 had one single facet, type 2 had two distinct articular facets,
and type 3 had three articular facets one of which was a lateral
inferior facet elevated from the first. Type 1 joints occurred exclusively
in the hallux valgus specimens, while type 3 joints occurred exclusively
in normal specimens. Type 2 joints occurred in both hallux valgus
and normal specimens. Another consistent finding in regards to the
proximal articular surface of the first metatarsal was the lateral
plantar prominence. This prominence possessed its own articular
surface in type 3 joints and was significantly flatter in specimens
with hallux valgus (p <
0.001) and the angle with the joint was
significantly more obtuse (p <
0.001). Conclusions. We believe the size and acute angle of this prominence gives
structural mechanical impedance to
The incidence of acute Achilles tendon rupture appears to be increasing. The aim of this study was to summarize various therapies for acute Achilles tendon rupture and discuss their relative merits. A PubMed search about the management of acute Achilles tendon rupture was performed. The search was open for original manuscripts and review papers limited to publication from January 2006 to July 2017. A total of 489 papers were identified initially and finally 323 articles were suitable for this review.Objectives
Methods
The aim of this study was to compare the biomechanical stability and clinical outcome of external fixator combined with limited internal fixation (EFLIF) and open reduction and internal fixation (ORIF) in treating Sanders type 2 calcaneal fractures. Two types of fixation systems were selected for finite element analysis and a dual cohort study. Two fixation systems were simulated to fix the fracture in a finite element model. The relative displacement and stress distribution were analysed and compared. A total of 71 consecutive patients with closed Sanders type 2 calcaneal fractures were enrolled and divided into two groups according to the treatment to which they chose: the EFLIF group and the ORIF group. The radiological and clinical outcomes were evaluated and compared.Objectives
Methods
Inflammation of the retrocalcaneal bursa (RB) is a common clinical problem, particularly in professional athletes. RB inflammation is often treated with corticosteroid injections however a number of reports suggest an increased risk of Achilles tendon (AT) rupture. The aim of this cadaveric study was to describe the anatomical connections of the RB and to investigate whether it is possible for fluid to move from the RB into AT tissue. A total of 20 fresh-frozen AT specimens were used. In ten specimens, ink was injected into the RB. The remaining ten specimens were split into two groups to be injected with radiological contrast medium into the RB either with or without ultrasonography guidance (USG).Objectives
Methods
The objective of this study was to evaluate the rotation and
translation of each joint in the hindfoot and compare the load response
in healthy feet with that in stage II posterior tibial tendon dysfunction
(PTTD) flatfoot by analysing the reconstructive three-dimensional
(3D) computed tomography (CT) image data during simulated weight-bearing. CT scans of 15 healthy feet and 15 feet with stage II PTTD flatfoot
were taken first in a non-weight-bearing condition, followed by
a simulated full-body weight-bearing condition. The images of the
hindfoot bones were reconstructed into 3D models. The ‘twice registration’
method in three planes was used to calculate the position of the
talus relative to the calcaneus in the talocalcaneal joint, the
navicular relative to the talus in talonavicular joint, and the cuboid
relative to the calcaneus in the calcaneocuboid joint.Objective
Methods
The main object of this study was to use a geometric morphometric
approach to quantify the left-right symmetry of talus bones. Analysis was carried out using CT scan images of 11 pairs of
intact tali. Two important geometric parameters, volume and surface
area, were quantified for left and right talus bones. The geometric
shape variations between the right and left talus bones were also
measured using deviation analysis. Furthermore, location of asymmetry
in the geometric shapes were identified. Numerical results showed that talus bones are bilaterally symmetrical
in nature, and the difference between the surface area of the left
and right talus bones was less than 7.5%. Similarly, the difference
in the volume of both bones was less than 7.5%. Results of the three-dimensional
(3D) deviation analyses demonstrated the mean deviation between
left and right talus bones were in the range of -0.74 mm to 0.62
mm. It was observed that in eight of 11 subjects, the deviation
in symmetry occurred in regions that are clinically less important
during talus surgery. Objective
Methods
Results