Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Research
Vol. 8, Issue 7 | Pages 313 - 322
1 Jul 2019
Hanberg P Lund A Søballe K Bue M

Objectives. Meropenem may be an important drug in the treatment of open tibial fractures and chronic osteomyelitis. Therefore, the objective of this study was to describe meropenem pharmacokinetics in plasma, subcutaneous adipose tissue (SCT), and cancellous bone using microdialysis in a porcine model. Methods. Six female pigs were assigned to receive 1000 mg of meropenem intravenously over five minutes. Measurements of meropenem were obtained from plasma, SCT, and cancellous bone for eight hours thereafter. Microdialysis was applied for sampling in solid tissues. The meropenem concentrations were determined using ultra-high-performance liquid chromatography. Results. The penetration of meropenem into cancellous bone, expressed as the ratio of plasma to cancellous bone area under the concentration-curve from zero to the last measured value, was incomplete and delayed. The time with concentration above the minimal inhibitory concentration (T. >MIC. ), for an MIC of 0.5 μg/ml, was shorter for cancellous bone in comparison with both plasma and SCT. For MICs above 0.5 μg/ml, T. >MIC. in cancellous bone was only shorter than SCT. Considering an MIC of 4 μg/ml, no animals achieved the target of 40% T. >MIC. in plasma and cancellous bone, while less than 20% achieved it in SCT. Conclusion. The main finding of this study was short T. >MIC. in cancellous bone after intravenous administration of 1000 mg meropenem. Consequently, in order to achieve sufficient tissue concentration in the cases of open tibial fractures and chronic osteomyelitis, supplemental application of meropenem may be necessary. Cite this article: P. Hanberg, A. Lund, K. Søballe, M. Bue. Single-dose pharmacokinetics of meropenem in porcine cancellous bone determined by microdialysis: An animal study. Bone Joint Res 2019;8:342–348. DOI: 10.1302/2046-3758.87.BJR-2018-0308.R1


Bone & Joint Research
Vol. 12, Issue 10 | Pages 644 - 653
10 Oct 2023
Hinz N Butscheidt S Jandl NM Rohde H Keller J Beil FT Hubert J Rolvien T

Aims

The management of periprosthetic joint infection (PJI) remains a major challenge in orthopaedic surgery. In this study, we aimed to characterize the local bone microstructure and metabolism in a clinical cohort of patients with chronic PJI.

Methods

Periprosthetic femoral trabecular bone specimens were obtained from patients suffering from chronic PJI of the hip and knee (n = 20). Microbiological analysis was performed on preoperative joint aspirates and tissue specimens obtained during revision surgery. Microstructural and cellular bone parameters were analyzed in bone specimens by histomorphometry on undecalcified sections complemented by tartrate-resistant acid phosphatase immunohistochemistry. Data were compared with control specimens obtained during primary arthroplasty (n = 20) and aseptic revision (n = 20).


Bone & Joint Research
Vol. 10, Issue 3 | Pages 218 - 225
1 Mar 2021
Wiesli MG Kaiser J Gautier E Wick P Maniura-Weber K Rottmar M Wahl P

Aims

In orthopaedic and trauma surgery, implant-associated infections are increasingly treated with local application of antibiotics, which allows a high local drug concentration to be reached without eliciting systematic adverse effects. While ceftriaxone is a widely used antibiotic agent that has been shown to be effective against musculoskeletal infections, high local concentrations may harm the surrounding tissue. This study investigates the acute and subacute cytotoxicity of increasing ceftriaxone concentrations as well as their influence on the osteogenic differentiation of human bone progenitor cells.

Methods

Human preosteoblasts were cultured in presence of different concentrations of ceftriaxone for up to 28 days and potential cytotoxic effects, cell death, metabolic activity, cell proliferation, and osteogenic differentiation were studied.