Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:

Aims. This study aimed, through bioinformatics analysis, to identify the potential diagnostic markers of osteoarthritis, and analyze the role of immune infiltration in synovial tissue. Methods. The gene expression profiles were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified by R software. Functional enrichment analyses were performed and protein-protein interaction networks (PPI) were constructed. Then the hub genes were screened. Biomarkers with high value for the diagnosis of early osteoarthritis (OA) were validated by GEO datasets. Finally, the CIBERSORT algorithm was used to evaluate the immune infiltration between early-stage OA and end-stage OA, and the correlation between the diagnostic marker and infiltrating immune cells was analyzed. Results. A total of 88 DEGs were identified. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that DEGs were significantly enriched in leucocyte migration and interleukin (IL)-17 signalling pathways. Disease ontology (DO) indicated that DEGs were mostly enriched in rheumatoid arthritis. Six hub genes including FosB proto-oncogene, AP-1 transcription factor subunit (FOSB); C-X-C motif chemokine ligand 2 (CXCL2); CXCL8; IL-6; Jun proto-oncogene, AP-1 transcription factor subunit (JUN); and Activating transcription factor 3 (ATF3) were identified and verified by GEO datasets. ATF3 (area under the curve = 0.975) turned out to be a potential biomarker for the diagnosis of early OA. Several infiltrating immune cells varied significantly between early-stage OA and end-stage OA, such as resting NK cells (p = 0.016), resting dendritic cells (p = 0.043), and plasma cells (p = 0.043). Additionally, ATF3 was significantly correlated with resting NK cells (p = 0.034), resting dendritic cells (p = 0.026), and regulatory T cells (Tregs, p = 0.018). Conclusion. ATF3 may be a potential diagnostic marker for early diagnosis and treatment of OA, and immune cell infiltration provides new perspectives for understanding the mechanism during OA progression. Cite this article: Bone Joint Res 2022;11(9):679–689


Bone & Joint Research
Vol. 12, Issue 12 | Pages 702 - 711
1 Dec 2023
Xue Y Zhou L Wang J

Aims. Knee osteoarthritis (OA) involves a variety of tissues in the joint. Gene expression profiles in different tissues are of great importance in order to understand OA. Methods. First, we obtained gene expression profiles of cartilage, synovium, subchondral bone, and meniscus from the Gene Expression Omnibus (GEO). Several datasets were standardized by merging and removing batch effects. Then, we used unsupervised clustering to divide OA into three subtypes. The gene ontology and pathway enrichment of three subtypes were analyzed. CIBERSORT was used to evaluate the infiltration of immune cells in different subtypes. Finally, OA-related genes were obtained from the Molecular Signatures Database for validation, and diagnostic markers were screened according to clinical characteristics. Quantitative reverse transcription polymerase chain reaction (qRT‐PCR) was used to verify the effectiveness of markers. Results. C1 subtype is mainly concentrated in the development of skeletal muscle organs, C2 lies in metabolic process and immune response, and C3 in pyroptosis and cell death process. Therefore, we divided OA into three subtypes: bone remodelling subtype (C1), immune metabolism subtype (C2), and cartilage degradation subtype (C3). The number of macrophage M0 and activated mast cells of C2 subtype was significantly higher than those of the other two subtypes. COL2A1 has significant differences in different subtypes. The expression of COL2A1 is related to age, and trafficking protein particle complex subunit 2 is related to the sex of OA patients. Conclusion. This study linked different tissues with gene expression profiles, revealing different molecular subtypes of patients with knee OA. The relationship between clinical characteristics and OA-related genes was also studied, which provides a new concept for the diagnosis and treatment of OA. Cite this article: Bone Joint Res 2023;12(12):702–711


Bone & Joint Research
Vol. 9, Issue 3 | Pages 130 - 138
1 Mar 2020
Qi X Yu F Wen Y Li P Cheng B Ma M Cheng S Zhang L Liang C Liu L Zhang F

Aims. Osteoarthritis (OA) is the most prevalent joint disease. However, the specific and definitive genetic mechanisms of OA are still unclear. Methods. Tissue-related transcriptome-wide association studies (TWAS) of hip OA and knee OA were performed utilizing the genome-wide association study (GWAS) data of hip OA and knee OA (including 2,396 hospital-diagnosed hip OA patients versus 9,593 controls, and 4,462 hospital-diagnosed knee OA patients versus 17,885 controls) and gene expression reference to skeletal muscle and blood. The OA-associated genes identified by TWAS were further compared with the differentially expressed genes detected by the messenger RNA (mRNA) expression profiles of hip OA and knee OA. Functional enrichment and annotation analysis of identified genes was performed by the DAVID and FUMAGWAS tools. Results. We detected 33 common genes, eight common gene ontology (GO) terms, and one common pathway for hip OA, such as calcium and integrin-binding protein 1 (CIB1) (PTWAS = 0.025, FCmRNA = -1.575 for skeletal muscle), adrenomedullin (ADM) (PTWAS = 0.022, FCmRNA = -4.644 for blood), Golgi apparatus (PTWAS <0.001, PmRNA = 0.012 for blood), and phosphatidylinositol 3' -kinase-protein kinase B (PI3K-Akt) signalling pathway (PTWAS = 0.033, PmRNA = 0.005 for blood). For knee OA, we detected 24 common genes, eight common GO terms, and two common pathways, such as histocompatibility complex, class II, DR beta 1 (HLA-DRB1) (PTWAS = 0.040, FCmRNA = 4.062 for skeletal muscle), Follistatin-like 1 (FSTL1) (PTWAS = 0.048, FCmRNA = 3.000 for blood), cytoplasm (PTWAS < 0.001, PmRNA = 0.005 for blood), and complement and coagulation cascades (PTWAS = 0.017, PmRNA = 0.001 for skeletal muscle). Conclusion. We identified a group of OA-associated genes and pathways, providing novel clues for understanding the genetic mechanism of OA. Cite this article:Bone Joint Res. 2020;9(3):130–138


Bone & Joint Research
Vol. 13, Issue 5 | Pages 237 - 246
17 May 2024
Cheng B Wu C Wei W Niu H Wen Y Li C Chen P Chang H Yang Z Zhang F

Aims

To assess the alterations in cell-specific DNA methylation associated with chondroitin sulphate response using peripheral blood collected from Kashin-Beck disease (KBD) patients before initiation of chondroitin sulphate treatment.

Methods

Peripheral blood samples were collected from KBD patients at baseline of chondroitin sulphate treatment. Methylation profiles were generated using reduced representation bisulphite sequencing (RRBS) from peripheral blood. Differentially methylated regions (DMRs) were identified using MethylKit, while DMR-related genes were defined as those annotated to the gene body or 2.2-kilobase upstream regions of DMRs. Selected DMR-related genes were further validated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) to assess expression levels. Tensor composition analysis was performed to identify cell-specific differential DNA methylation from bulk tissue.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 362 - 370
9 Jun 2022
Zhou J He Z Cui J Liao X Cao H Shibata Y Miyazaki T Zhang J

Aims

Osteoarthritis (OA) is a common degenerative joint disease. The osteocyte transcriptome is highly relevant to osteocyte biology. This study aimed to explore the osteocyte transcriptome in subchondral bone affected by OA.

Methods

Gene expression profiles of OA subchondral bone were used to identify disease-relevant genes and signalling pathways. RNA-sequencing data of a bone loading model were used to identify the loading-responsive gene set. Weighted gene co-expression network analysis (WGCNA) was employed to develop the osteocyte mechanics-responsive gene signature.


Bone & Joint Research
Vol. 12, Issue 2 | Pages 91 - 102
1 Feb 2023
Li Z Chen M Wang Z Fan Q Lin Z Tao X Wu J Liu Z Lin R Zhao C

Aims

Rheumatoid arthritis (RA) is a common chronic immune disease. Berberine, as its main active ingredient, was also contained in a variety of medicinal plants such as Berberaceae, Buttercup, and Rutaceae, which are widely used in digestive system diseases in traditional Chinese medicine with anti-inflammatory and antibacterial effects. The aims of this article were to explore the therapeutic effect and mechanism of berberine on rheumatoid arthritis.

Methods

Cell Counting Kit-8 was used to evaluate the effect of berberine on the proliferation of RA fibroblast-like synoviocyte (RA-FLS) cells. The effect of berberine on matrix metalloproteinase (MMP)-1, MMP-3, receptor activator of nuclear factor kappa-Β ligand (RANKL), tumour necrosis factor alpha (TNF-α), and other factors was determined by enzyme-linked immunoassay (ELISA) kit. Transcriptome technology was used to screen related pathways and the potential targets after berberine treatment, which were verified by reverse transcription-polymerase chain reaction (RT-qPCR) and Western blot (WB) technology.


Bone & Joint Research
Vol. 12, Issue 4 | Pages 274 - 284
11 Apr 2023
Du X Jiang Z Fang G Liu R Wen X Wu Y Hu S Zhang Z

Aims

This study aimed to investigate the role and mechanism of meniscal cell lysate (MCL) in fibroblast-like synoviocytes (FLSs) and osteoarthritis (OA).

Methods

Meniscus and synovial tissue were collected from 14 patients with and without OA. MCL and FLS proteins were extracted and analyzed by liquid chromatography‒mass spectrometry (LC‒MS). The roles of MCL and adenine nucleotide translocase 3 (ANT3) in FLSs were examined by enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunofluorescence, and transmission electron microscopy. Histological analysis was performed to determine ANT3 expression levels in a male mouse model.


Bone & Joint Research
Vol. 9, Issue 8 | Pages 501 - 514
1 Aug 2020
Li X Yang Y Sun G Dai W Jie X Du Y Huang R Zhang J

Aims

Rheumatoid arthritis (RA) is a systematic autoimmune disorder, characterized by synovial inflammation, bone and cartilage destruction, and disease involvement in multiple organs. Although numerous drugs are employed in RA treatment, some respond little and suffer from severe side effects. This study aimed to screen the candidate therapeutic targets and promising drugs in a novel method.

Methods

We developed a module-based and cumulatively scoring approach that is a deeper-layer application of weighted gene co-expression network (WGCNA) and connectivity map (CMap) based on the high-throughput datasets.


Aims

This study aimed to uncover the hub long non-coding RNAs (lncRNAs) differentially expressed in osteoarthritis (OA) cartilage using an integrated analysis of the competing endogenous RNA (ceRNA) network and co-expression network.

Methods

Expression profiles data of ten OA and ten normal tissues of human knee cartilage were obtained from the Gene Expression Omnibus (GEO) database (GSE114007). The differentially expressed messenger RNAs (DEmRNAs) and lncRNAs (DElncRNAs) were identified using the edgeR package. We integrated human microRNA (miRNA)-lncRNA/mRNA interactions with DElncRNA/DEmRNA expression profiles to construct a ceRNA network. Likewise, lncRNA and mRNA expression profiles were used to build a co-expression network with the WGCNA package. Potential hub lncRNAs were identified based on an integrated analysis of the ceRNA network and co-expression network. StarBase and Multi Experiment Matrix databases were used to verify the lncRNAs.


Bone & Joint Research
Vol. 9, Issue 1 | Pages 36 - 48
1 Jan 2020
González-Chávez SA Pacheco-Tena C Quiñonez-Flores CM Espino-Solis GP Burrola-De Anda JI Muñoz-Morales PM

Aims

To assess the effect of physical exercise (PE) on the histological and transcriptional characteristics of proteoglycan-induced arthritis (PGIA) in BALB/c mice.

Methods

Following PGIA, mice were subjected to treadmill PE for ten weeks. The tarsal joints were used for histological and genetic analysis through microarray technology. The genes differentially expressed by PE in the arthritic mice were obtained from the microarray experiments. Bioinformatic analysis in the DAVID, STRING, and Cytoscape bioinformatic resources allowed the association of these genes in biological processes and signalling pathways.