Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remains a challenge. A novel surgical technique named ‘tibial cortex transverse transport’ (TTT) has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In the present study, we explored the potential biological mechanisms of TTT surgery using various techniques in a rat TTT animal model. A novel rat model of TTT was established with a designed external fixator, and effects on wound healing were investigated. Laser speckle perfusion imaging, vessel perfusion, histology, and immunohistochemistry were used to evaluate the wound healing processes.Aims
Methods
The surgical challenge with severe hindfoot injuries is one of technical feasibility, and whether the limb can be salvaged. There is an additional question of whether these injuries should be managed with limb salvage, or whether patients would achieve a greater quality of life with a transtibial amputation. This study aims to measure functional outcomes in military patients sustaining hindfoot fractures, and identify injury features associated with poor function. Follow-up was attempted in all United Kingdom military casualties sustaining hindfoot fractures. All respondents underwent short-form (SF)-12 scoring; those retaining their limb also completed the American Academy of Orthopaedic Surgeons Foot and Ankle (AAOS F&A) outcomes questionnaire. A multivariate regression analysis identified injury features associated with poor functional recovery.Objectives
Methods
The objective of this study was to evaluate the rotation and
translation of each joint in the hindfoot and compare the load response
in healthy feet with that in stage II posterior tibial tendon dysfunction
(PTTD) flatfoot by analysing the reconstructive three-dimensional
(3D) computed tomography (CT) image data during simulated weight-bearing. CT scans of 15 healthy feet and 15 feet with stage II PTTD flatfoot
were taken first in a non-weight-bearing condition, followed by
a simulated full-body weight-bearing condition. The images of the
hindfoot bones were reconstructed into 3D models. The ‘twice registration’
method in three planes was used to calculate the position of the
talus relative to the calcaneus in the talocalcaneal joint, the
navicular relative to the talus in talonavicular joint, and the cuboid
relative to the calcaneus in the calcaneocuboid joint.Objective
Methods