Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Bone & Joint Research
Vol. 3, Issue 3 | Pages 60 - 68
1 Mar 2014
Langton DJ Sidaginamale RP Holland JP Deehan D Joyce TJ Nargol AVF Meek RD Lord JK

Objectives. Wear debris released from bearing surfaces has been shown to provoke negative immune responses in the recipient. Excessive wear has been linked to early failure of prostheses. Analysis using coordinate measuring machines (CMMs) can provide estimates of total volumetric material loss of explanted prostheses and can help to understand device failure. The accuracy of volumetric testing has been debated, with some investigators stating that only protocols involving hundreds of thousands of measurement points are sufficient. We looked to examine this assumption and to apply the findings to the clinical arena. . Methods. We examined the effects on the calculated material loss from a ceramic femoral head when different CMM scanning parameters were used. Calculated wear volumes were compared with gold standard gravimetric tests in a blinded study. . Results. Various scanning parameters including point pitch, maximum point to point distance, the number of scanning contours or the total number of points had no clinically relevant effect on volumetric wear calculations. Gravimetric testing showed that material loss can be calculated to provide clinically relevant degrees of accuracy. . Conclusions. Prosthetic surfaces can be analysed accurately and rapidly with currently available technologies. Given these results, we believe that routine analysis of explanted hip components would be a feasible and logical extension to National Joint Registries. Cite this article: Bone Joint Res 2014;3:60–8


Bone & Joint Research
Vol. 5, Issue 4 | Pages 122 - 129
1 Apr 2016
Small SR Rogge RD Malinzak RA Reyes EM Cook PL Farley KA Ritter MA

Objectives

Initial stability of tibial trays is crucial for long-term success of total knee arthroplasty (TKA) in both primary and revision settings. Rotating platform (RP) designs reduce torque transfer at the tibiofemoral interface. We asked if this reduced torque transfer in RP designs resulted in subsequently reduced micromotion at the cemented fixation interface between the prosthesis component and the adjacent bone.

Methods

Composite tibias were implanted with fixed and RP primary and revision tibial trays and biomechanically tested under up to 2.5 kN of axial compression and 10° of external femoral component rotation. Relative micromotion between the implanted tibial tray and the neighbouring bone was quantified using high-precision digital image correlation techniques.