Cite this article:
The use of artificial intelligence (AI) is rapidly growing across many domains, of which the medical field is no exception. AI is an umbrella term defining the practical application of algorithms to generate useful output, without the need of human cognition. Owing to the expanding volume of patient information collected, known as ‘big data’, AI is showing promise as a useful tool in healthcare research and across all aspects of patient care pathways. Practical applications in orthopaedic surgery include: diagnostics, such as fracture recognition and tumour detection; predictive models of clinical and patient-reported outcome measures, such as calculating mortality rates and length of hospital stay; and real-time rehabilitation monitoring and surgical training. However, clinicians should remain cognizant of AI’s limitations, as the development of robust reporting and validation frameworks is of paramount importance to prevent avoidable errors and biases. The aim of this review article is to provide a comprehensive understanding of AI and its subfields, as well as to delineate its existing clinical applications in trauma and orthopaedic surgery. Furthermore, this narrative review expands upon the limitations of AI and future direction. Cite this article:
The French registry for complex bone and joint infections (C-BJIs) was created in 2012 in order to facilitate a homogeneous management of patients presented for multidisciplinary advice in referral centres for C-BJI, to monitor their activity and to produce epidemiological data. We aimed here to present the genesis and characteristics of this national registry and provide the analysis of its data quality. A centralized online secured database gathering the electronic case report forms (eCRFs) was filled for every patient presented in multidisciplinary meetings (MM) among the 24 French referral centres. Metrics of this registry were described between 2012 and 2016. Data quality was assessed by comparing essential items from the registry with a controlled dataset extracted from medical charts of a random sample of patients from each centre. Internal completeness and consistency were calculated.Aims
Methods