Machine-learning (ML) prediction models in orthopaedic trauma hold great promise in assisting clinicians in various tasks, such as personalized risk stratification. However, an overview of current applications and critical appraisal to peer-reviewed guidelines is lacking. The objectives of this study are to 1) provide an overview of current ML prediction models in orthopaedic trauma; 2) evaluate the completeness of reporting following the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement; and 3) assess the risk of bias following the Prediction model Risk Of Bias Assessment Tool (PROBAST) tool. A systematic search screening 3,252 studies identified 45 ML-based prediction models in orthopaedic trauma up to January 2023. The TRIPOD statement assessed transparent reporting and the PROBAST tool the risk of bias.Aims
Methods
Recurrent dislocation is both a cause and consequence of glenoid bone loss, and the extent of the bony defect is an indicator guiding operative intervention. Literature suggests that loss greater than 25% requires glenoid reconstruction. Measuring bone loss is controversial; studies use different methods to determine this, with no clear evidence of reproducibility. A systematic review was performed to identify existing CT-based methods of quantifying glenoid bone loss and establish their reliability and reproducibility A Preferred Reporting Items for Systematic reviews and Meta-Analyses-compliant systematic review of conventional and grey literature was performed.Aims
Methods