Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Open
Vol. 3, Issue 5 | Pages 415 - 422
17 May 2022
Hillier-Smith R Paton B

Aims. Avulsion of the proximal hamstring tendon origin can result in significant functional impairment, with surgical re-attachment of the tendons becoming an increasingly recognized treatment. The aim of this study was to assess the outcomes of surgical management of proximal hamstring tendon avulsions, and to compare the results between acute and chronic repairs, as well as between partial and complete injuries. Methods. PubMed, CINAHL, SPORTdiscuss, Cochrane Library, EMBASE, and Web of Science were searched. Studies were screened and quality assessed. Results. In all, 35 studies (1,530 surgically-repaired hamstrings) were included. Mean age at time of repair was 44.7 years (12 to 78). A total of 846 tears were acute, and 684 were chronic, with 520 tears being defined as partial, and 916 as complete. Overall, 92.6% of patients were satisfied with the outcome of their surgery. Mean Lower Extremity Functional Score was 74.7, and was significantly higher in the partial injury group. Mean postoperative hamstring strength was 87.0% of the uninjured limb, and was higher in the partial group. The return to sport (RTS) rate was 84.5%, averaging at a return of 6.5 months. RTS was quicker in the acute group. Re-rupture rate was 1.2% overall, and was lower in the acute group. Sciatic nerve dysfunction rate was 3.5% overall, and lower in the acute group (p < 0.05 in all cases). Conclusion. Surgical treatment results in high satisfaction rates, with good functional outcomes, restoration of muscle strength, and RTS. Partial injuries could expect a higher functional outcome and muscle strength return. Acute repairs result in a quicker RTS with a reduced rate of re-rupture and sciatic nerve dysfunction. Cite this article: Bone Jt Open 2022;3(5):415–422


Bone & Joint Open
Vol. 2, Issue 6 | Pages 397 - 404
1 Jun 2021
Begum FA Kayani B Magan AA Chang JS Haddad FS

Limb alignment in total knee arthroplasty (TKA) influences periarticular soft-tissue tension, biomechanics through knee flexion, and implant survival. Despite this, there is no uniform consensus on the optimal alignment technique for TKA. Neutral mechanical alignment facilitates knee flexion and symmetrical component wear but forces the limb into an unnatural position that alters native knee kinematics through the arc of knee flexion. Kinematic alignment aims to restore native limb alignment, but the safe ranges with this technique remain uncertain and the effects of this alignment technique on component survivorship remain unknown. Anatomical alignment aims to restore predisease limb alignment and knee geometry, but existing studies using this technique are based on cadaveric specimens or clinical trials with limited follow-up times. Functional alignment aims to restore the native plane and obliquity of the joint by manipulating implant positioning while limiting soft tissue releases, but the results of high-quality studies with long-term outcomes are still awaited. The drawbacks of existing studies on alignment include the use of surgical techniques with limited accuracy and reproducibility of achieving the planned alignment, poor correlation of intraoperative data to long-term functional outcomes and implant survivorship, and a paucity of studies on the safe ranges of limb alignment. Further studies on alignment in TKA should use surgical adjuncts (e.g. robotic technology) to help execute the planned alignment with improved accuracy, include intraoperative assessments of knee biomechanics and periarticular soft-tissue tension, and correlate alignment to long-term functional outcomes and survivorship.


Cite this article: Bone Joint Open 2020;1-11:706–708.