Aims. Current diagnostic tools are not always able to effectively identify periprosthetic joint infections (PJIs). Recent studies suggest that circulating microRNAs (miRNAs) undergo changes under pathological conditions such as infection. The aim of this study was to analyze miRNA expression in hip arthroplasty PJI patients. Methods. This was a prospective pilot study, including 24 patients divided into three groups, with eight patients each undergoing revision of their hip arthroplasty due to aseptic reasons, and low- and high-grade PJI, respectively. The number of intraoperative samples and the incidence of positive cultures were recorded for each patient. Additionally, venous blood samples and periarticular tissue samples were collected from each patient to determine miRNA expressions between the groups. MiRNA screening was performed by small RNA-sequencing using the miRNA next generation sequencing (NGS) discovery (miND) pipeline. Results. Overall, several miRNAs in plasma and tissue were identified to be progressively deregulated according to ongoing PJI. When comparing the plasma samples, patients with a high-grade infection showed significantly higher expression levels for hsa-miR-21-3p, hsa-miR-1290, and hsa-miR-4488, and lower expression levels for hsa-miR-130a-3p and hsa-miR-451a compared to the aseptic group. Furthermore, the high-grade group showed a significantly higher regulated expression level of hsa-miR-1260a and lower expression levels for hsa-miR-26a-5p, hsa-miR-26b-5p, hsa-miR-148b-5p, hsa-miR-301a-3p, hsa-miR-451a, and hsa-miR-454-3p compared to the low-grade group. No significant differences were found between the low-grade and aseptic groups. When comparing the tissue samples, the high-grade group showed significantly higher expression levels for 23 different miRNAs and lower expression levels for hsa-miR-2110 and hsa-miR-3200-3p compared to the aseptic group. No significant differences were found in miRNA expression between the high- and low-grade groups, as well as between the low-grade and aseptic groups. Conclusion. With this prospective pilot study, we were able to identify a circulating miRNA signature correlating with high-grade PJI compared to aseptic patients undergoing hip arthroplasty revision. Our data contribute to establishing miRNA signatures as potential novel diagnostic and prognostic
Aims. The aim of the HIPGEN consortium is to develop the first cell therapy product for hip fracture patients using PLacental-eXpanded (PLX-PAD) stromal cells. Methods. HIPGEN is a multicentre, multinational, randomized, double-blind, placebo-controlled trial. A total of 240 patients aged 60 to 90 years with low-energy femoral neck fractures (FNF) will be allocated to two arms and receive an intramuscular injection of either 150 × 10. 6. PLX-PAD cells or placebo into the medial gluteal muscle after direct lateral implantation of total or hemi hip arthroplasty. Patients will be followed for two years. The primary endpoint is the Short Physical Performance Battery (SPPB) at week 26. Secondary and exploratory endpoints include morphological parameters (lean body mass), functional parameters (abduction and handgrip strength, symmetry in gait, weightbearing), all-cause mortality rate and patient-reported outcome measures (Lower Limb Measure, EuroQol five-dimension questionnaire). Immunological