header advert
Results 1 - 3 of 3
Results per page:
Bone & Joint Open
Vol. 4, Issue 11 | Pages 865 - 872
15 Nov 2023
Hussain SA Russell A Cavanagh SE Bridgens A Gelfer Y

Aims. The Ponseti method is the gold standard treatment for congenital talipes equinovarus (CTEV), with the British Consensus Statement providing a benchmark for standard of care. Meeting these standards and providing expert care while maintaining geographical accessibility can pose a service delivery challenge. A novel ‘Hub and Spoke’ Shared Care model was initiated to deliver Ponseti treatment for CTEV, while addressing standard of care and resource allocation. The aim of this study was to assess feasibility and outcomes of the corrective phase of Ponseti service delivery using this model. Methods. Patients with idiopathic CTEV were seen in their local hospitals (‘Spokes’) for initial diagnosis and casting, followed by referral to the tertiary hospital (‘Hub’) for tenotomy. Non-idiopathic CTEV was managed solely by the Hub. Primary and secondary outcomes were achieving primary correction, and complication rates resulting in early transfer to the Hub, respectively. Consecutive data were prospectively collected and compared between patients allocated to Hub or Spokes. Mann-Whitney U test, Wilcoxon signed-rank test, or chi-squared tests were used for analysis (alpha-priori = 0.05, two-tailed significance). Results. Between 1 March 2020 and 31 March 2023, 92 patients (139 feet) were treated at the service (Hub 50%, n = 46; Spokes 50%, n = 46), of whom nine were non-idiopathic. All patients (n = 92), regardless of allocation, ultimately achieved primary correction, with idiopathic patients at the Hub requiring fewer casts than the Spokes (mean 4.0 (SD 1.4) vs 6.9 (SD 4.4); p < 0.001). Overall, 60.9% of Spokes’ patients (n = 28/46) required transfer to the Hub due to complications (cast slips Hub n = 2; Spokes n = 17; p < 0.001). These patients ultimately achieved full correction at the Hub. Conclusion. The Shared Care model was found to be feasible in terms of providing primary correction to all patients, with results comparable to other published services. Complication rates were higher at the Spokes, although these were correctable. Future research is needed to assess long-term outcomes, parents’ satisfaction, and cost-effectiveness. Cite this article: Bone Jt Open 2023;4(11):865–872


Bone & Joint Open
Vol. 3, Issue 11 | Pages 913 - 923
28 Nov 2022
Hareendranathan AR Wichuk S Punithakumar K Dulai S Jaremko J

Aims

Studies of infant hip development to date have been limited by considering only the changes in appearance of a single ultrasound slice (Graf’s standard plane). We used 3D ultrasound (3DUS) to establish maturation curves of normal infant hip development, quantifying variation by age, sex, side, and anteroposterior location in the hip.

Methods

We analyzed 3DUS scans of 519 infants (mean age 64 days (6 to 111 days)) presenting at a tertiary children’s hospital for suspicion of developmental dysplasia of the hip (DDH). Hips that did not require ultrasound follow-up or treatment were classified as ‘typically developing’. We calculated traditional DDH indices like α angle (αSP), femoral head coverage (FHCSP), and several novel indices from 3DUS like the acetabular contact angle (ACA) and osculating circle radius (OCR) using custom software.


Bone & Joint Open
Vol. 4, Issue 10 | Pages 750 - 757
10 Oct 2023
Brenneis M Thewes N Holder J Stief F Braun S

Aims

Accurate skeletal age and final adult height prediction methods in paediatric orthopaedics are crucial for determining optimal timing of growth-guiding interventions and minimizing complications in treatments of various conditions. This study aimed to evaluate the accuracy of final adult height predictions using the central peak height (CPH) method with long leg X-rays and four different multiplier tables.

Methods

This study included 31 patients who underwent temporary hemiepiphysiodesis for varus or valgus deformity of the leg between 2014 and 2020. The skeletal age at surgical intervention was evaluated using the CPH method with long leg radiographs. The true final adult height (FHTRUE) was determined when the growth plates were closed. The final height prediction accuracy of four different multiplier tables (1. Bayley and Pinneau; 2. Paley et al; 3. Sanders – Greulich and Pyle (SGP); and 4. Sanders – peak height velocity (PHV)) was then compared using either skeletal age or chronological age.