Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Bone & Joint Open
Vol. 1, Issue 11 | Pages 709 - 714
5 Nov 2020
Finsen V Kalstad AM Knobloch RG

Aims. We aimed to establish the short- and long-term efficacy of corticosteroid injection for coccydynia, and to determine if betamethasone or triamcinolone has the best effect. Methods. During 2009 to 2016, we treated 277 patients with chronic coccydynia with either one 6 mg betamethasone or one 20 mg triamcinolone cortisone injection. A susequent injection was given to 62 (26%) of the patients. All were reviewed three to four months after injection, and 241 replied to a questionnaire a mean of 36 months (12 to 88) after the last injection. No pain at the early review was considered early success. When the patient had not been subsequently operated on, and indicated on the questionnaire that they were either well or much better, it was considered a long-term success. Results. At the three- to four-month review, 22 (9%) reported that they had no pain. The long-term success of one injection was 15% and rose to 29% after a second injection. Logistic regression tests showed that both early success (odds ratio (OR) 5.5, 95% confidence interval (CI) 2.1 to 14.4; p = 0.001) and late success (OR 3.7, 95% CI 1.7 to 8.3; p = 0.001) was greater with triamcinolone than with betamethasone. Late success was greater for patients with symptoms for less than 12 months (OR 3.0, 95% CI 1.4 to 6.7; p = 0.006). We saw no complications of the injections. Conclusion. We conclude that the effect of corticosteroid injection for coccygodynia is moderate, possibly because we used modest doses of the drugs. Even so, they seem worthwhile as they are easily and quickly performed, and complications are rare. If the choice is between injections of betamethasone or triamcinolone, the latter should be selected. Cite this article: Bone Joint Open 2020;1-11:709–714


Bone & Joint Open
Vol. 4, Issue 11 | Pages 873 - 880
17 Nov 2023
Swaby L Perry DC Walker K Hind D Mills A Jayasuriya R Totton N Desoysa L Chatters R Young B Sherratt F Latimer N Keetharuth A Kenison L Walters S Gardner A Ahuja S Campbell L Greenwood S Cole A

Aims. Scoliosis is a lateral curvature of the spine with associated rotation, often causing distress due to appearance. For some curves, there is good evidence to support the use of a spinal brace, worn for 20 to 24 hours a day to minimize the curve, making it as straight as possible during growth, preventing progression. Compliance can be poor due to appearance and comfort. A night-time brace, worn for eight to 12 hours, can achieve higher levels of curve correction while patients are supine, and could be preferable for patients, but evidence of efficacy is limited. This is the protocol for a randomized controlled trial of ‘full-time bracing’ versus ‘night-time bracing’ in adolescent idiopathic scoliosis (AIS). Methods. UK paediatric spine clinics will recruit 780 participants aged ten to 15 years-old with AIS, Risser stage 0, 1, or 2, and curve size (Cobb angle) 20° to 40° with apex at or below T7. Patients are randomly allocated 1:1, to either full-time or night-time bracing. A qualitative sub-study will explore communication and experiences of families in terms of bracing and research. Patient and Public Involvement & Engagement informed study design and will assist with aspects of trial delivery and dissemination. Discussion. The primary outcome is ‘treatment failure’ (Cobb angle progression to 50° or more before skeletal maturity); skeletal maturity is at Risser stage 4 in females and 5 in males, or ‘treatment success’ (Cobb angle less than 50° at skeletal maturity). The comparison is on a non-inferiority basis (non-inferiority margin 11%). Participants are followed up every six months while in brace, and at one and two years after skeletal maturity. Secondary outcomes include the Scoliosis Research Society 22 questionnaire and measures of quality of life, psychological effects of bracing, adherence, anxiety and depression, sleep, satisfaction, and educational attainment. All data will be collected through the British Spine Registry. Cite this article: Bone Jt Open 2023;4(11):873–880


Bone & Joint Open
Vol. 3, Issue 2 | Pages 123 - 129
1 Feb 2022
Bernard J Bishop T Herzog J Haleem S Lupu C Ajayi B Lui DF

Aims. Vertebral body tethering (VBT) is a non-fusion technique to correct scoliosis. It allows correction of scoliosis through growth modulation (GM) by tethering the convex side to allow concave unrestricted growth similar to the hemiepiphysiodesis concept. The other modality is anterior scoliosis correction (ASC) where the tether is able to perform most of the correction immediately where limited growth is expected. Methods. We conducted a retrospective analysis of clinical and radiological data of 20 patients aged between 9 and 17 years old, (with a 19 female: 1 male ratio) between January 2014 to December 2016 with a mean five-year follow-up (4 to 7). Results. There were ten patients in each group with a total of 23 curves operated on. VBT-GM mean age was 12.5 years (9 to 14) with a mean Risser classification of 0.63 (0 to 2) and VBT-ASC was 14.9 years (13 to 17) with a mean Risser classification of 3.66 (3 to 5). Mean preoperative VBT-GM Cobb was 47.4° (40° to 58°) with a Fulcrum unbend of 17.4 (1° to 41°), compared to VBT-ASC 56.5° (40° to 79°) with 30.6 (2° to 69°)unbend. Postoperative VBT-GM was 20.3° and VBT-ASC Cobb angle was 11.2°. The early postoperative correction rate was 54.3% versus 81% whereas Fulcrum Bending Correction Index (FBCI) was 93.1% vs 146.6%. The last Cobb angle on radiograph at mean five years’ follow-up was 19.4° (VBT-GM) and 16.5° (VBT-ASC). Patients with open triradiate cartilage (TRC) had three over-corrections. Overall, 5% of patients required fusion. This one patient alone had a over-correction, a second-stage tether release, and final conversion to fusion. Conclusion. We show a high success rate (95%) in helping children avoid fusion at five years post-surgery. VBT is a safe technique for correction of scoliosis in the skeletally immature patient. This is the first report at five years that shows two methods of VBT can be employed depending on the skeletal maturity of the patient: GM and ASC. Cite this article: Bone Jt Open 2022;3(2):123–129


Bone & Joint Open
Vol. 5, Issue 5 | Pages 435 - 443
23 May 2024
Tadross D McGrory C Greig J Townsend R Chiverton N Highland A Breakwell L Cole AA

Aims

Gram-negative infections are associated with comorbid patients, but outcomes are less well understood. This study reviewed diagnosis, management, and treatment for a cohort treated in a tertiary spinal centre.

Methods

A retrospective review was performed of all gram-negative spinal infections (n = 32; median age 71 years; interquartile range 60 to 78), excluding surgical site infections, at a single centre between 2015 to 2020 with two- to six-year follow-up. Information regarding organism identification, antibiotic regime, and treatment outcomes (including clinical, radiological, and biochemical) were collected from clinical notes.


Bone & Joint Open
Vol. 5, Issue 7 | Pages 612 - 620
19 Jul 2024
Bada ES Gardner AC Ahuja S Beard DJ Window P Foster NE

Aims

People with severe, persistent low back pain (LBP) may be offered lumbar spine fusion surgery if they have had insufficient benefit from recommended non-surgical treatments. However, National Institute for Health and Care Excellence (NICE) 2016 guidelines recommended not offering spinal fusion surgery for adults with LBP, except as part of a randomized clinical trial. This survey aims to describe UK clinicians’ views about the suitability of patients for such a future trial, along with their views regarding equipoise for randomizing patients in a future clinical trial comparing lumbar spine fusion surgery to best conservative care (BCC; the FORENSIC-UK trial).

Methods

An online cross-sectional survey was piloted by the multidisciplinary research team, then shared with clinical professional groups in the UK who are involved in the management of adults with severe, persistent LBP. The survey had seven sections that covered the demographic details of the clinician, five hypothetical case vignettes of patients with varying presentations, a series of questions regarding the preferred management, and whether or not each clinician would be willing to recruit the example patients into future clinical trials.


Bone & Joint Open
Vol. 2, Issue 7 | Pages 540 - 544
19 Jul 2021
Jensen MM Milosevic S Andersen GØ Carreon L Simony A Rasmussen MM Andersen MØ

Aims

The aim of this study was to identify factors associated with poor outcome following coccygectomy on patients with chronic coccydynia and instability of the coccyx.

Methods

From the Danish National Spine Registry, DaneSpine, 134 consecutive patients were identified from a single centre who had coccygectomy from 2011 to 2019. Patient demographic data and patient-reported outcomes, including pain measured on a visual analogue scale (VAS), Oswestry Disability Index (ODI), EuroQol five-dimension five-level questionnaire, and 36-Item Short-Form Health Survey questionnaire (SF-36) were obtained at baseline and at one-year follow-up. Patient satisfaction was obtained at follow-up. Regression analysis, including age, sex, smoking status, BMI, duration of symptoms, work status, welfare payment, preoperative VAS, ODI, and SF-36 was performed to identify factors associated with dissatisfaction with results at one-year follow-up.


Bone & Joint Open
Vol. 2, Issue 3 | Pages 198 - 201
1 Mar 2021
Habeebullah A Rajgor HD Gardner A Jones M

Aims

The British Spine Registry (BSR) was introduced in May 2012 to be used as a web-based database for spinal surgeries carried out across the UK. Use of this database has been encouraged but not compulsory, which has led to a variable level of engagement in the UK. In 2019 NHS England and NHS Improvement introduced a new Best Practice Tariff (BPT) to encourage input of spinal surgical data on the BSR. The aim of our study was to assess the impact of the spinal BPT on compliance with the recording of surgical data on the BSR.

Methods

A retrospective review of data was performed at a tertiary spinal centre between 2018 to 2020. Data were collated from electronic patient records, theatre operating lists, and trust-specific BSR data. Information from the BSR included operative procedures (mandatory), patient consent, email addresses, and demographic details. We also identified Healthcare Resource Groups (HRGs) which qualified for BPT.