Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Open
Vol. 2, Issue 5 | Pages 344 - 350
31 May 2021
Ahmad SS Hoos L Perka C Stöckle U Braun KF Konrads C

Aims. The follow-up interval of a study represents an important aspect that is frequently mentioned in the title of the manuscript. Authors arbitrarily define whether the follow-up of their study is short-, mid-, or long-term. There is no clear consensus in that regard and definitions show a large range of variation. It was therefore the aim of this study to systematically identify clinical research published in high-impact orthopaedic journals in the last five years and extract follow-up information to deduce corresponding evidence-based definitions of short-, mid-, and long-term follow-up. Methods. A systematic literature search was performed to identify papers published in the six highest ranked orthopaedic journals during the years 2015 to 2019. Follow-up intervals were analyzed. Each article was assigned to a corresponding subspecialty field: sports traumatology, knee arthroplasty and reconstruction, hip-preserving surgery, hip arthroplasty, shoulder and elbow arthroplasty, hand and wrist, foot and ankle, paediatric orthopaedics, orthopaedic trauma, spine, and tumour. Mean follow-up data were tabulated for the corresponding subspecialty fields. Comparison between means was conducted using analysis of variance. Results. Of 16,161 published articles, 590 met the inclusion criteria. Of these, 321 were of level IV evidence, 176 level III, 53 level II, and 40 level I. Considering all included articles, a long-term study published in the included high impact journals had a mean follow-up of 151.6 months, a mid-term study of 63.5 months, and a short-term study of 30.0 months. Conclusion. The results of this study provide evidence-based definitions for orthopaedic follow-up intervals that should provide a citable standard for the planning of clinical studies. A minimum mean follow-up of a short-term study should be 30 months (2.5 years), while a mid-term study should aim for a mean follow-up of 60 months (five years), and a long-term study should aim for a mean of 150 months (12.5 years). Level of Evidence: Level I. Cite this article: Bone Jt Open 2021;2(5):344–350


Bone & Joint Open
Vol. 3, Issue 7 | Pages 582 - 588
1 Jul 2022
Hodel S Selman F Mania S Maurer SM Laux CJ Farshad M

Aims. Preprint servers allow authors to publish full-text manuscripts or interim findings prior to undergoing peer review. Several preprint servers have extended their services to biological sciences, clinical research, and medicine. The purpose of this study was to systematically identify and analyze all articles related to Trauma & Orthopaedic (T&O) surgery published in five medical preprint servers, and to investigate the factors that influence the subsequent rate of publication in a peer-reviewed journal. Methods. All preprints covering T&O surgery were systematically searched in five medical preprint servers (medRxiv, OSF Preprints, Preprints.org, PeerJ, and Research Square) and subsequently identified after a minimum of 12 months by searching for the title, keywords, and corresponding author in Google Scholar, PubMed, Scopus, Embase, Cochrane, and the Web of Science. Subsequent publication of a work was defined as publication in a peer-reviewed indexed journal. The rate of publication and time to peer-reviewed publication were assessed. Differences in definitive publication rates of preprints according to geographical origin and level of evidence were analyzed. Results. The number of preprints increased from 2014 to 2020 (p < 0.001). A total of 38.6% of the identified preprints (n = 331) were published in a peer-reviewed indexed journal after a mean time of 8.7 months (SD 5.4 (1 to 27)). The highest proportion of missing subsequent publications was in the preprints originating from Africa, Asia/Middle East, and South America, or in those that covered clinical research with a lower level of evidence (p < 0.001). Conclusion. Preprints are being published in increasing numbers in T&O surgery. Depending on the geographical origin and level of evidence, almost two-thirds of preprints are not subsequently published in a peer-reviewed indexed journal after one year. This raises major concerns regarding the dissemination and persistence of potentially wrong scientific work that bypasses peer review, and the orthopaedic community should discuss appropriate preventive measures. Cite this article: Bone Jt Open 2022;3(7):582–588


Bone & Joint Open
Vol. 1, Issue 5 | Pages 121 - 130
13 May 2020
Crosby BT Behbahani A Olujohungbe O Cottam B Perry D

Objectives. This review aims to summarize the outcomes used to describe effectiveness of treatments for paediatric wrist fractures within existing literature. Method. We searched the Cochrane Library, Scopus, and Ovid Medline for studies pertaining to paediatric wrist fractures. Three authors independently identified and reviewed eligible studies. This resulted in a list of outcome domains and outcomes measures used within clinical research. Outcomes were mapped onto domains defined by the COMET collaborative. Results. Our search terms identified 4,262 different papers. Screening of titles excluded 2,975, leaving 1,287 papers to be assessed for eligibility. Of this 1,287, 30 studies were included for full analysis. Overall, five outcome domains, 16 outcome measures, and 28 measurement instruments were identified as outcomes within these studies. 24 studies used at least one measurement pertaining to the physiological/clinical outcome domain. The technical, life impact, and adverse effect domains were recorded in 23, 20, and 11 of the studies respectively. Within each domain it was common for different measurement instruments to be used to assess each outcome measure. The most commonly reported outcome measures were range of movement, a broad array of “radiological measures” and pain intensity, which were used in 24, 23, and 12 of the 30 studies. Conclusion. This study highlights the heterogeneity in outcomes reported within clinical effectiveness studies of paediatric wrist fractures. We provided an overview of the types of outcomes reported in paediatric wrist fracture studies and identified a list of potentially relevant outcomes required for the development of a core outcome set