Aims. The primary aim of this study is to assess the survival of the uncemented hydroxyapatite (HA) coated Trident II acetabular component as part of a hybrid total hip arthroplasty (THA) using a
Assessment of bone health is a multifaceted clinical process, incorporating biochemical and diagnostic tests that should be accurate and reproducible. Dual-energy X-ray absorptiometry (DXA) is the reference standard for evaluation of bone mineral density, but has known limitations. Alternatives include quantitative CT (q-CT), MRI, and peripheral quantitative ultrasound (QUS). Radiofrequency echographic multispectrometry (REMS) is a new generation of ultrasound technology used for the assessment of bone mineral density (BMD) at axial sites that is as accurate as quality-assured DXA scans. It also provides an assessment of the quality of bone architecture. This will be of direct value and significance to orthopaedic surgeons when planning surgical procedures, including fracture fixation and surgery of the hip and spine, since BMD alone is a poor predictor of fracture risk. The various other fixed-site technologies such as high-resolution peripheral q-CT (HR-pQCT) and MRI offer no further significant prognostic advantages in terms of assessing bone structure and BMD to predict fracture risk. QUS was the only widely adopted non-fixed imaging option for bone health assessment, but it is not considered adequately accurate to provide a quantitative assessment of BMD or provide a prediction of fracture risk. In contrast, REMS has a robust evidence base that demonstrates its equivalence to DXA in determining BMD at axial sites. Fracture prediction using REMS, combining the output of fragility information and BMD, has been established as more accurate than when using BMD alone.Aims
Methods
Unicompartmental knee arthroplasty (UKA) is associated with an accelerated recovery, improved functional outcomes, and retention of anatomical knee kinematics when compared to manual total knee arthroplasty (mTKA). UKA is not universally employed by all surgeons as there is a higher revision risk when compared to mTKA. Robotic arm-assisted (ra) UKA enables the surgeon to position the prosthesis more accurately when compared to manual UKA, and is associated with improved functional outcomes and a lower early revision risk. Non-randomized data suggests that, when compared to mTKA, raUKA has a clinically meaningful greater functional benefit. This protocol describes a randomized controlled trial that aims to evaluate the clinical and cost-effectiveness of raUKA compared to mTKA for individuals with isolated medial compartment osteoarthritis (OA). The total versus robotic-assisted unicompartmental knee arthroplasty (TRAKER) trial is a patient- and assessor-blinded, pragmatic parallel two-arm randomized superiority trial of adults undergoing elective primary knee arthroplasty for primary medial compartment OA at a single NHS hospital (ClinicalTrials.gov NCT05290818). Participants will be randomly allocated on a 1:2 basis to either raUKA or mTKA, respectively. The primary analysis will compare the Oxford Knee Score (OKS) six months after surgery. Secondary outcomes measured at three, six, and 12 months include the OKS, Forgotten Joint Score, patient expectations, EuroQol five-dimension questionnaire (EQ-5D), and EQ-visual analogue scale (EQ-VAS), patient satisfaction, range of motion, postoperative complications, need for further surgery, resource use, and financial costs. Cost-effectiveness will be measured over a ten-year time span. A total of 159 patients will be randomized (n = 53 raUKA vs n = 106 mTKA) to obtain 80% power to detect a five-point difference in OKS between the groups six months after surgery.Aims
Methods