The aim of the study was to investigate whether the primary stability of press-fit acetabular components can be improved by altering the impaction procedure. Three impaction procedures were used to implant acetabular components into human cadaveric acetabula using a powered impaction device. An impaction frequency of 1 Hz until complete component seating served as reference. Overimpaction was simulated by adding ten strokes after complete component seating. High-frequency implantation was performed at 6 Hz. The lever-out moment of the acetabular components was used as measure for primary stability. Permanent bone deformation was assessed by comparison of double micro-CT (µCT) measurements before and after impaction. Acetabular component deformation and impaction forces were recorded, and the extent of bone-implant contact was determined from 3D laser scans.Aims
Methods
The aim of this study was to estimate the 90-day risk of revision for periprosthetic femoral fracture associated with design features of cementless femoral stems, and to investigate the effect of a collar on this risk using a biomechanical A total of 337 647 primary total hip arthroplasties (THAs) from the United Kingdom National Joint Registry (NJR) were included in a multivariable survival and regression analysis to identify the adjusted hazard of revision for periprosthetic fracture following primary THA using a cementless stem. The effect of a collar in cementless THA on this risk was evaluated in an Aims
Materials and Methods
Loosening of pedicle screws is a major complication of posterior
spinal stabilisation, especially in the osteoporotic spine. Our
aim was to evaluate the effect of cement augmentation compared with
extended dorsal instrumentation on the stability of posterior spinal
fixation. A total of 12 osteoporotic human cadaveric spines (T11-L3) were
randomised by bone mineral density into two groups and instrumented
with pedicle screws: group I (SHORT) separated T12 or L2 and group
II (EXTENDED) specimen consisting of T11/12 to L2/3. Screws were
augmented with cement unilaterally in each vertebra. Fatigue testing
was performed using a cranial-caudal sinusoidal, cyclic (1.0 Hz)
load with stepwise increasing peak force.Aims
Materials and Methods
It is becoming increasingly common for a patient
to have ipsilateral hip and knee replacements. The inter-prosthetic (IP)
distance, the distance between the tips of hip and knee prostheses,
has been thought to be associated with an increased risk of IP fracture.
Small gap distances are generally assumed to act as stress risers,
although there is no real biomechanical evidence to support this. The purpose of this study was to evaluate the influence of IP
distance, cortical thickness and bone mineral density on the likelihood
of an IP femoral fracture. A total of 18 human femur specimens were randomised into three
groups by bone density and cortical thickness. For each group, a
defined IP distance of 35 mm, 80 mm or 160 mm was created by choosing
the appropriate lengths of component. The maximum fracture strength
was determined using a four-point bending test. The fracture force of all three groups was similar (p = 0.498).
There was a highly significant correlation between the cortical
area and the fracture strength (r = 0.804, p <
0.001), whereas
bone density showed no influence. This study suggests that the IP distance has little influence
on fracture strength in IP femoral fractures: the thickness of the
cortex seems to be the decisive factor. Cite this article: