In this study the direct relationship between the type of bone implant used, the vascular reaction caused to the host and the revascularisation of the implant has been studied. It was found that the best graft was that which was the most rapidly and permanently vascularised. Not only was the biological affinity between the graft and the bed important, but the structural facilities offered by the implant for the "penetration" by the host vessels were also of paramount importance. Thus small, fresh, cancellous bone grafts offered the best chance of rapid incorporation provided they were not crushed to the point of making vascular progress difficult. The findings from this investigation so strongly suggest that the rapid revascularisation of the bone grafts was because of an end-to-end anastomosis of the vessels of the host with those in the implant that it seems justified to consider that the best bone graft is that which is richest in vessels. Apart from a recent short paper by Graf (1960), we have not found this assertion before. It is this which seems to make the fresh, autogenous, cancellous implant so superior to all others. We believe that any new material for bone grafts should be tested by the technique described here. The material which one day may replace fresh, autogenous, cancellous implants will have to show the same readiness to vascular penetration, vascular osteogenesis and vascular permanency that at present is exhibited only by the cancellous autograft.