Minimally invasive total knee replacement (MIS-TKR)
has been reported to have better early recovery than conventional
TKR. Quadriceps-sparing (QS) TKR is the least invasive MIS procedure,
but it is technically demanding with higher reported rates of complications
and outliers. This study was designed to compare the early clinical
and radiological outcomes of TKR performed by an experienced surgeon
using the QS approach with or without navigational assistance (NA),
or using a mini-medial parapatellar (MP) approach. In all, 100 patients
completed a minimum two-year follow-up: 30 in the NA-QS group, 35
in the QS group, and 35 in the MP group. There were no significant
differences in clinical outcome in terms of ability to perform a
straight-leg raise at 24 hours (p = 0.700), knee score (p = 0.952),
functional score (p = 0.229) and range of movement (p = 0.732) among
the groups. The number of outliers for all three radiological parameters
of mechanical axis, frontal femoral component alignment and frontal
tibial component alignment was significantly lower in the NA-QS
group than in the QS group (p = 0.008), but no outlier was found
in the MP group. In conclusion, even after the surgeon completed a substantial
number of cases before the commencement of this study, the supplementary
intra-operative use of computer-assisted navigation with QS-TKR
still gave inferior radiological results and longer operating time,
with a similar outcome at two years when compared with a MP approach. Cite this article:
Free radicals, such as reactive oxygen species (ROS) which are released abruptly after deflation of an ischaemic tourniquet, cause reperfusion injuries. Ischaemic precondition (IPC), however, can reduce the injury. In clinical practice, the sequential application and release of tourniquets is often used in bilateral total knee replacement (TKR) to obtain a clearer operative field, but the effects on the production of free radicals and lipid peroxidation have not been studied. In this study, we have observed the production of free radicals and the subsequent lipid peroxidation in bilateral TKR with sequential application of a tourniquet to examine the effect of IPC. Patients undergoing elective TKR under intrathecal anaesthesia were studied. Blood samples were obtained after spinal anaesthesia, one minute before and five and 20 minutes after release of each tourniquet. We used the lucigenin chemiluminescence analysis and the phosphatidylcholine hydroperoxide (PCOOH) assay to measure the production of ROS and lipid peroxidation. Our results showed that production of ROS significantly increased at five and 20 minutes after release of the first tourniquet and at five minutes after release of the second tourniquet, but returned to normal at 20 minutes after the second reperfusion. The peak production of ROS was at 20 minutes after the first reperfusion; lipid peroxidation did not change significantly. We conclude that in spite of significant production of ROS after the release of tourniquet, the IPC phenomenon occurs during bilateral TKR with sequential application of a tourniquet.
We have performed a prospective single-blinded randomised study to evaluate the role of antibiotic-impregnated cement in the prevention of deep infection at primary total knee arthroplasty (TKA) in patients with diabetes mellitus. We studied prospectively 78 arthroplasties performed for osteoarthritis in such patients. They were randomly separated into two groups. In group 1 (41 knees), cefuroxime-impregnated cement was used while in group 2 (37 knees) cefuroxime was not added to the cement. The preoperative, intraoperative and postoperative management was the same for both groups. The mean follow-up was 50 months (26 to 88). There were no cases of deep infection in group 1, but five (13.5%) occurred in group 2 (p = 0.021). We conclude that cefuroxime-impregnated cement is effective in the prevention of deep infection at primary TKA in patients with diabetes mellitus.