We report complications from the use of modular components in 20 hip replacements in 18 patients. Fifteen complications (in 13 patients) were related to failure of a modular interface after operation. Femoral head detachment from its trunnion was seen in 6 hips from trauma (3), reduction of a dislocation (2), and normal activity (1). In one case the base of the trunnion fractured below an extra-long modular head. In seven other hips the modular polyethylene liner dislodged from its shell, causing severe damage to the shell in four cases with extensive metallosis. In one other hip an asymmetrical polyethylene liner rotated, resulting in impingement of the femoral component and recurrent dislocation. Operative errors were seen in five cases: implantation of a trial acetabular component in one; and mismatching between the size of the femoral head and the acetabular component in the others. Surgeons who use hip replacements with modular components should be aware of the potential for operative error and of the importance of early treatment for postoperative mechanical failure.
We evaluated the initial stability of cemented and uncemented femoral components within the femoral canals of cadaver femurs during simulated single limb stance and stair climbing. Both types were very stable in simulated single limb stance (maximum micromotion of 42 microns for cemented and 30 microns for uncemented components). However, in simulated stair climbing, the cemented components were much more stable than the uncemented components (76 microns as against 280 microns). There was also greater variation in the stability of uncemented components in simulated stair climbing, with two of the seven components moving 200 microns or more. Future implant designs should aim to improve the initial stability of cementless femoral components under torsional loads; this should improve the chances of bony ingrowth.
We have tested the porosity and fatigue life of five commonly used bone cements: Simplex P, LVC, Zimmer regular, CMW and Palacos R. Tests were conducted with and without centrifugation and with the monomer at room temperature and, except for LVC, at 0 degrees C. We found that the fatigue life of different specimens varied by a factor of nearly 100. It did not depend on porosity alone, but was more influenced by the basic composition of the cement. Simplex P when mixed with monomer at 0 degrees C and centrifuged for 60 seconds had the highest fatigue life and was still sufficiently liquid to use easily.
The results of treatment of injuries of the thoracic and thoraco-lumbar spine with neurological involvement have been reviewed in a retrospective study of 115 patients, of whom eighty-nine received conservative and twenty-six surgical treatment. Operation was reserved, in general, for patients with irreducible dislocations and incomplete neurological lesions, open reduction and internal fixation being the commonest procedure. Only three patients required a delayed spinal fusion for suspected instability after a period of conservative treatment. On the other hand, ten patients, eight of whom had been treated surgically, were left with severe chronic spinal pain. Of the patients treated conservatively, 35% showed significant neurological improvement compared to 38% of those treated surgically, but the latter group contained a much higher proportion of incomplete lesions with a far better prognosis. It is concluded that the place for early operation might be still further restricted.