The issues surrounding raised levels of metal
ions in the blood following large head metal-on-metal total hip replacement
(THR), such as cobalt and chromium, have been well documented. Despite
the national popularity of uncemented metal-on-polyethylene (MoP)
THR using a large-diameter femoral head, few papers have reported
the levels of metal ions in the blood following this combination.
Following an isolated failure of a 44 mm Trident–Accolade uncemented
THR associated with severe wear between the femoral head and the
trunnion in the presence of markedly elevated levels of cobalt ions
in the blood, we investigated the relationship between modular femoral head
diameter and the levels of cobalt and chromium ions in the blood
following this THR. A total of 69 patients received an uncemented Trident–Accolade
MoP THR in 2009. Of these, 43 patients (23 men and 20 women, mean
age 67.0 years) were recruited and had levels of cobalt and chromium
ions in the blood measured between May and June 2012. The patients
were then divided into three groups according to the diameter of
the femoral head used: 12 patients in the 28 mm group (controls),
18 patients in the 36 mm group and 13 patients in the 40 mm group.
A total of four patients had identical bilateral prostheses in situ
at phlebotomy: one each in the 28 mm and 36 mm groups and two in
the 40 mm group. There was a significant increase in the mean levels of cobalt
ions in the blood in those with a 36 mm diameter femoral head compared
with those with a 28 mm diameter head (p = 0.013). The levels of
cobalt ions in the blood were raised in those with a 40 mm diameter
head but there was no statistically significant difference between
this group and the control group (p = 0.152). The levels of chromium
ions in the blood were normal in all patients. The clinical significance of this finding is unclear, but we
have stopped using femoral heads with a diameter of ≤ 36 mm, and
await further larger studies to clarify whether, for instance, this
issue particularly affects this combination of components. Cite this article: