Advertisement for orthosearch.org.uk
Results 1 - 20 of 31
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 856 - 862
1 Jun 2012
Piper SL Laron D Manzano G Pattnaik T Liu X Kim HT Feeley BT

Peri-tendinous injection of local anaesthetic, both alone and in combination with corticosteroids, is commonly performed in the treatment of tendinopathies. Previous studies have shown that local anaesthetics and corticosteroids are chondrotoxic, but their effect on tenocytes remains unknown. We compared the effects of lidocaine and ropivacaine, alone or combined with dexamethasone, on the viability of cultured bovine tenocytes. Tenocytes were exposed to ten different conditions: 1) normal saline; 2) 1% lidocaine; 3) 2% lidocaine; 4) 0.2% ropivacaine; 5) 0.5% ropivacaine; 6) dexamethasone (dex); 7) 1% lidocaine+dex; 8) 2% lidocaine+dex; 9) 0.2% ropivacaine+dex; and 10) 0.5% ropivacaine+dex, for 30 minutes. After a 24-hour recovery period, the viability of the tenocytes was quantified using the CellTiter-Glo viability assay and fluorescence-activated cell sorting (FACS) for live/dead cell counts. A 30-minute exposure to lidocaine alone was significantly toxic to the tenocytes in a dose-dependent manner, but a 30-minute exposure to ropivacaine or dexamethasone alone was not significantly toxic. Dexamethasone potentiated ropivacaine tenocyte toxicity at higher doses of ropivacaine, but did not potentiate lidocaine tenocyte toxicity. As seen in other cell types, lidocaine has a dose-dependent toxicity to tenocytes but ropivacaine is not significantly toxic. Although dexamethasone alone is not toxic, its combination with 0.5% ropivacaine significantly increased its toxicity to tenocytes. These findings might be relevant to clinical practice and warrant further investigation


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 989 - 994
1 Jul 2014
Ozturk AM Ergun MA Demir T Gungor I Yilmaz A Kaya K

Ketamine has been used in combination with a variety of other agents for intra-articular analgesia, with promising results. However, although it has been shown to be toxic to various types of cell, there is no available information on the effects of ketamine on chondrocytes. We conducted a prospective randomised controlled study to evaluate the effects of ketamine on cultured chondrocytes isolated from rat articular cartilage. The cultured cells were treated with 0.125 mM, 0.250 mM, 0.5 mM, 1 mM and 2 mM of ketamine respectively for 6 h, 24 hours and 48 hours, and compared with controls. Changes of apoptosis were evaluated using fluorescence microscopy with a 490 nm excitation wavelength. Apoptosis and eventual necrosis were seen at each concentration. The percentage viability of the cells was inversely proportional to both the duration and dose of treatment (p = 0.002 and p = 0.009). Doses of 0.5 mM, 1 mM and 2mM were absolutely toxic. We concluded that in the absence of solid data to support the efficacy of intra-articular ketamine for the control of pain, and the toxic effects of ketamine on cultured chondrocytes shown by this study, intra-articular ketamine, either alone or in combination with other agents, should not be used to control pain. Cite this article: Bone Joint J 2014; 96-B:989–94


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 404 - 412
1 Mar 2018
Parker JD Lim KS Kieser DC Woodfield TBF Hooper GJ

Aims

The intra-articular administration of tranexamic acid (TXA) has been shown to be effective in reducing blood loss in unicompartmental knee arthroplasty and anterior cruciate reconstruction. The effects on human articular cartilage, however, remains unknown. Our aim, in this study, was to investigate any detrimental effect of TXA on chondrocytes, and to establish if there was a safe dose for its use in clinical practice. The hypothesis was that TXA would cause a dose-dependent damage to human articular cartilage.

Materials and Methods

The cellular morphology, adhesion, metabolic activity, and viability of human chondrocytes when increasing the concentration (0 mg/ml to 40 mg/ml) and length of exposure to TXA (0 to 12 hours) were analyzed in a 2D model. This was then repeated, excluding cellular adhesion, in a 3D model and confirmed in viable samples of articular cartilage.


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 6 | Pages 984 - 985
1 Nov 1996
Quint U Vanhöfer U Harstrick A Müller RT

Local treatment with phenol is often used after intralesional excision of chondroblastomas and giant-cell tumours which involve bone near joints, and has been shown to reduce the rate of recurrence. The ideal concentration of phenol is uncertain, but may be important because of the high rate of absorption and toxicity. We have studied the effectiveness of different concentrations on standard sarcoma cell lines. Our results suggest that a 5% solution of phenol is effective against dispersed single cells, and that higher concentrations give no significant advantage, but create problems due to lack of homogeneous mixing, temperature and safety


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 3 | Pages 545 - 551
1 May 1999
Decker S Winkelmann W Nies B van Valen F

Bone tumours may recur locally even after wide surgical excision and systemic chemotherapy. Local control of growth may be accomplished by the addition of cytostatic drugs such as methotrexate (MTX) to bone cement used to fill the defect after surgery and to stabilise the reconstructive prosthesis. We have studied the elution kinetics of MTX and its solvent N-methyl-pyrrolidone (NMP) from bone cement and their biological activities in five cell lines of osteosarcoma and in osteoblasts, and compared them with the effects of the parent compounds alone and in combination. Our findings show that MTX is released continuously over months at concentrations highly cytotoxic to osteosarcoma cells and suggest that the impregnated bone cement would be effective in the long term. Proliferating osteoblasts, however, were much less sensitive towards MTX. The dose-response relationship for NMP and experiments with MTX/NMP-mixtures show that the eluted concentrations of solvent are not toxic and do not influence the effects of MTX. We suggest that bone cement containing MTX dissolved in NMP releases the drug in a suitable and effective way and may be of value in the treatment of bone tumours


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 3 | Pages 475 - 482
1 May 1997
Allen MJ Myer BJ Millett PJ Rushton N

Particulate wear debris can induce the release of bone-resorbing cytokines from cultured macrophages and fibroblasts in vitro, and these mediators are believed to be the cause of the periprosthetic bone resorption which leads to aseptic loosening in vivo. Much less is known about the effects of particulate debris on the growth and metabolism of osteoblastic cells. We exposed two human osteoblast-like cell lines (SaOS-2 and MG-63) to particulate cobalt, chromium and cobalt-chromium alloy at concentrations of 0, 0.01, 0.1 and 1.0 mg/ml. Cobalt was toxic to both cell lines and inhibited the production of type-I collagen, osteocalcin and alkaline phosphatase. Chromium and cobalt-chromium were well tolerated by both cell lines, producing no cytotoxicity and no inhibition of type-I collagen synthesis. At the highest concentration tested (1.0 mg/ml), however, chromium inhibited alkaline phosphatase activity, and both chromium and cobalt-chromium alloy inhibited osteocalcin expression. Our results clearly show that particulate metal debris can modulate the growth and metabolism of osteoblastic cells in vitro. Reduced osteoblastic activity at the bone-implant interface may be an important mechanism by which particulate wear debris influences the pathogenesis of aseptic loosening in vivo


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 2 | Pages 311 - 315
1 Mar 1997
Rogers SD Howie DW Graves SE Pearcy MJ Haynes DR

Our aim was to determine whether in vitro studies would detect differences in the cellular response to wear particles of two titanium alloys commonly used in the manufacture of joint replacement prostheses. Particles were of the order of 1 μm in diameter representative of those found adjacent to failed prostheses. Exposure of human monocytes to titanium 6-aluminium 4- vanadium (TiAlV) at concentrations of 4 x 10. 7. particles/ml produced a mean prostaglandin E. 2. release of 2627.6 pM; this was significantly higher than the 317.4 pM induced by titanium 6-aluminium 7-niobium alloy (TiAlNb) particles (p = 0.006). Commercially-pure titanium particles induced a release of 347.8 pM. In addition, TiAlV stimulated significantly more release of the other cell mediators, interleukin-1, tumour necrosis factor and interleukin-6. At lower concentrations of particles there was less mediator release and less obvious differences between materials. None of the materials caused significant toxicity. The levels of inflammatory mediators released by phagocytic cells in response to wear particles may influence the amount of periprosthetic bone loss. Our findings have shown that in vitro studies can detect differences in cellular response induced by particles of similar titanium alloys in common clinical use, although in vivo studies have shown little difference. While in vitro studies should not be used as the only form of assessment, they must be considered when assessing the relative biocompatibility of different implant materials


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 2 | Pages 283 - 289
1 Mar 2000
Heinemann DEH Lohmann C Siggelkow H Alves F Engel I Köster G

Periprosthetic osteolysis is a major cause of aseptic loosening in artificial joint replacement. It is assumed to occur in conjunction with the activation of macrophages. We have shown in vitro that human osteoblast-like cells, isolated from bone specimens obtained from patients undergoing hip replacement, phagocytose fine particles of titanium alloy (TiAlV). The human osteoblast-like cells were identified immunocytochemically by the presence of bone-specific alkaline phosphatase (BAP). With increasing duration of culture, a variable number of the osteoblastic cells became positive for the macrophage marker CD68, independent of the phagocytosis of particles, with a fine granular cytoplasmic staining which was coexpressed with BAP as revealed by immunodoublestaining. The metal particles were not toxic to the osteoblastic cells since even in culture for up to four weeks massively laden cells were vital and had a characteristic morphology. Cells of the human osteosarcoma cell line (HOS 58) were also able to phagocytose metal particles but had only a low expression of the CD68 antigen. Fluorescence-activated cell scanning confirmed our immunocytochemical results. Additionally, the cells were found to be negative for the major histocompatibility complex-II (MHC-II) which is a marker for macrophages and other antigen-presenting cells. Negative results of histochemical tests for tartrate-resistant acid phosphatase excluded the contamination by osteoclasts or macrophages in culture. Our observations suggest that the osteoblast can either change to a phagocytosing cell or that the phagocytosis is an underestimated property of the osteoblast. The detection of the CD68 antigen is insufficient to prove the monocytic lineage. In order to discriminate between macrophages and osteoblasts additional markers should be used. To our knowledge, this is the first demonstration of cells of an osteoblastic origin which have acquired a mixed phenotype of both osteoblasts and macrophages


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 848 - 855
1 Jun 2012
Tayton ER Smith JO Aarvold A Kalra S Dunlop DG Oreffo ROC

When transferring tissue regenerative strategies involving skeletal stem cells to human application, consideration needs to be given to factors that may affect the function of the cells that are transferred. Local anaesthetics are frequently used during surgical procedures, either administered directly into the operative site or infiltrated subcutaneously around the wound. The aim of this study was to investigate the effects of commonly used local anaesthetics on the morphology, function and survival of human adult skeletal stem cells.

Cells from three patients who were undergoing elective hip replacement were harvested and incubated for two hours with 1% lidocaine, 0.5% levobupivacaine or 0.5% bupivacaine hydrochloride solutions. Viability was quantified using WST-1 and DNA assays. Viability and morphology were further characterised using CellTracker Green/Ethidium Homodimer-1 immunocytochemistry and function was assessed by an alkaline phosphatase assay. An additional group was cultured for a further seven days to allow potential recovery of the cells after removal of the local anaesthetic.

A statistically significant and dose dependent reduction in cell viability and number was observed in the cell cultures exposed to all three local anaesthetics at concentrations of 25% and 50%, and this was maintained even following culture for a further seven days.

This study indicates that certain local anaesthetic agents in widespread clinical use are deleterious to skeletal progenitor cells when studied in vitro; this might have relevance in clinical applications.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1475 - 1479
1 Oct 2010
Gortzak Y Kandel R Deheshi B Werier J Turcotte RE Ferguson PC Wunder JS

Various chemicals are commonly used as adjuvant treatment to surgery for giant-cell tumour (GCT) of bone. The comparative effect of these solutions on the cells of GCT is not known. In this study we evaluated the cytotoxic effect of sterile water, 95% ethanol, 5% phenol, 3% hydrogen peroxide (H2O2) and 50% zinc chloride (ZnCI2) on GCT monolayer tumour cultures which were established from six patients. The DNA content, the metabolic activity and the viability of the cultured samples of tumour cells were assessed at various times up to 120 hours after their exposure to these solutions.

Equal cytotoxicity to the GCT monolayer culture was observed for 95% ethanol, 5% phenol, 3% H2O2 and 50% ZnCI2. The treated samples showed significant reductions in DNA content and metabolic activity 24 hours after treatment and this was sustained for up to 120 hours. The samples treated with sterile water showed an initial decline in DNA content and viability 24 hours after treatment, but the surviving cells were viable and had proliferated. No multinucleated cell formation was seen in these cultures.

These results suggest that the use of chemical adjuvants other than water could help improve local control in the treatment of GCT of bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1655 - 1659
1 Dec 2007
Anwar HA Aldam CH Visuvanathan S Hart AJ

The biological significance of cobalt-chromium wear particles from metal-on-metal hip replacements may be different to the effects of the constituent metal ions in solution. Bacteria may be able to discriminate between particulate and ionic forms of these metals because of a transmembrane nickel/cobalt-permease. It is not known whether wear particles are bacteriocidal.

We compared the doubling time of coagulase negative staphylococcus, Staphylococcus aureus and methicillin resistant S. aureus when cultured in either wear particles from a metal-on-metal hip simulator, wear particles from a metal-on-polyethylene hip simulator, metal ions in solution or a control.

Doubling time halved in metal-on-metal (p = 0.003) and metal-on-polyethylene (p = 0.131) particulate debris compared with the control.

Bacterial nickel/cobalt-transporters allow metal ions but not wear particles to cross bacterial membranes. This may be useful for testing the biological characteristics of different wear debris. This experiment also shows that metal-on-metal hip wear debris is not bacteriocidal.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 814 - 820
1 Jun 2008
Chu CR Izzo NJ Coyle CH Papas NE Logar A

We have studied the effects of bupivacaine on human and bovine articular chondrocytes in vitro. Time-lapse confocal microscopy of human articular chondrocytes showed > 95% cellular death after exposure to 0.5% bupivacaine for 30 minutes. Human and bovine chondrocytes exposed to 0.25% bupivacaine had a time-dependent reduction in viability, with longer exposure times resulting in higher cytotoxicity. Cellular death continued even after removal of 0.25% bupivacaine. After exposure to 0.25% bupivacaine for 15 minutes, flow cytometry showed bovine chondrocyte viability to be 41% of saline control after seven days. After exposure to 0.125% bupivacaine for up to 60 minutes, the viability of both bovine and human chondrocytes was similar to that of control groups.

These data show that prolonged exposure 0.5% and 0.25% bupivacaine solutions are potentially chondrotoxic.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 8 | Pages 1106 - 1109
1 Aug 2009
Branstetter JG Jackson SR Haggard WO Richelsoph KC Wenke JC

We used a goat model of a contaminated musculoskeletal defect to determine the effectiveness of rapidly-resorbing calcium-sulphate pellets containing amikacin to reduce the local bacterial count. Our findings showed that this treatment eradicated the bacteria quickly, performed as well as standard polymethylmethacrylate mixed with an antibiotic and had many advantages over the latter. The pellets were prepared before surgery and absorbed completely. They released all of the antibiotic and did not require a subsequent operation for their removal. Our study indicated that locally administered antibiotics reduced bacteria within the wound rapidly. This method of treatment may have an important role in decreasing the rate of infection in contaminated wounds.


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 845 - 850
1 Jun 2014
Romanò CL Logoluso N Meani E Romanò D De Vecchi E Vassena C Drago L

The treatment of chronic osteomyelitis often includes surgical debridement and filling the resultant void with antibiotic-loaded polymethylmethacrylate cement, bone grafts or bone substitutes. Recently, the use of bioactive glass to treat bone defects in infections has been reported in a limited series of patients. However, no direct comparison between this biomaterial and antibiotic-loaded bone substitute has been performed.

In this retrospective study, we compared the safety and efficacy of surgical debridement and local application of the bioactive glass S53P4 in a series of 27 patients affected by chronic osteomyelitis of the long bones (Group A) with two other series, treated respectively with an antibiotic-loaded hydroxyapatite and calcium sulphate compound (Group B; n = 27) or a mixture of tricalcium phosphate and an antibiotic-loaded demineralised bone matrix (Group C; n = 22). Systemic antibiotics were also used in all groups.

After comparable periods of follow-up, the control of infection was similar in the three groups. In particular, 25 out of 27 (92.6%) patients of Group A, 24 out of 27 (88.9%) in Group B and 19 out of 22 (86.3%) in Group C showed no infection recurrence at means of 21.8 (12 to 36), 22.1 (12 to 36) and 21.5 (12 to 36) months follow-up, respectively, while Group A showed a reduced wound complication rate.

Our results show that patients treated with a bioactive glass without local antibiotics achieved similar eradication of infection and less drainage than those treated with two different antibiotic-loaded calcium-based bone substitutes.

Cite this article: Bone Joint J 2014; 96-B:845–50.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 960 - 966
1 Jul 2006
Pluhar GE Turner AS Pierce AR Toth CA Wheeler DL

Critical size defects in ovine tibiae, stabilised with intramedullary interlocking nails, were used to assess whether the addition of carboxymethylcellulose to the standard osteogenic protein-1 (OP-1/BMP-7) implant would affect the implant’s efficacy for bone regeneration. The biomaterial carriers were a ‘putty’ carrier of carboxymethylcellulose and bovine-derived type-I collagen (OPP) or the standard with collagen alone (OPC). These two treatments were also compared to “ungrafted” negative controls. Efficacy of regeneration was determined using radiological, biomechanical and histological evaluations after four months of healing. The defects, filled with OPP and OPC, demonstrated radiodense material spanning the defect after one month of healing, with radiographic evidence of recorticalisation and remodelling by two months. The OPP and OPC treatment groups had equivalent structural and material properties that were significantly greater than those in the ungrafted controls. The structural properties of the OPP- and OPC-treated limbs were equivalent to those of the contralateral untreated limb (p > 0.05), yet material properties were inferior (p < 0.05). Histopathology revealed no residual inflammatory response to the biomaterial carriers or OP-1. The OPP- and OPC-treated animals had 60% to 85% lamellar bone within the defect, and less than 25% of the regenerate was composed of fibrous tissue. The defects in the untreated control animals contained less than 40% lamellar bone and more than 60% was fibrous tissue, creating full cortical thickness defects. In our studies carboxymethylcellulose did not adversely affect the capacity of the standard OP-1 implant for regenerating bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 1 | Pages 126 - 130
1 Jan 2011
Bruins MJ Zwiers JH Verheyen CCPM Wolfhagen MJHM

Aspiration arthrography using an iodinated contrast medium is a useful tool for the investigation of septic or aseptic loosening of arthroplasties and of septic arthritis. Previously, the contrast media have been thought to cause false negative results in cultures when present in aspirated samples of synovial fluid, probably because free iodine is bactericidal, but reports have been inconclusive.

We examined the influence of the older, high osmolar contrast agents and the low osmolar media used currently on the growth of ten different micro-organisms capable of causing deep infection around a prosthesis. Five media were tested, using a disc diffusion technique and a time-killing curve method in which high and low inocula of micro-organisms were incubated in undiluted media. The only bactericidal effects were found with low inocula of Escherichia coli and Pseudomonas aeruginosa in ioxithalamate, one of the older ionic media.

The low and iso-osmolar iodinated contrast media used currently do not impede culture. Future study must assess other causes of false negative cultures of synovial fluid and new developments in enhancing microbial recovery from aspirated samples.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 670 - 675
1 May 2009
Agholme F Aspenberg P

Soaking bone grafts in a bisphosphonate solution before implantation can prevent their resorption and increase the local bone density in rats and humans. However, recent studies suggest that pre-treatment of allografts with bisphosphonate can prevent bone ingrowth into impaction grafts. We tested the hypothesis that excessive amounts of bisphosphonate would also cause a negative response in less dense grafts. We used a model where non-impacted metaphyseal bone grafts were randomised into three groups with either no bisphosphonate, alendronate followed by rinsing, and alendronate without subsequent rinsing, and inserted into bone chambers in rats. The specimens were evaluated histologically at one week, and by histomorphometry and radiology at four weeks. At four weeks, both bisphosphonate groups showed an increase in the total bone content, increased newly formed bone, and higher radiodensity than the controls. In spite of being implanted in a chamber with a limited opportunity to diffuse, even an excessive amount of bisphosphonate improved the outcome. We suggest that the negative results seen by others could be due to the combination of densely compacted bone and a bisphosphonate.

We suggest that bisphosphonates are likely to have a negative influence where resorption is a prerequisite to create space for new bone ingrowth.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 835 - 842
1 Jun 2009
Hart AJ Skinner JA Winship P Faria N Kulinskaya E Webster D Muirhead-Allwood S Aldam CH Anwar H Powell JJ

We carried out a cross-sectional study with analysis of the demographic, clinical and laboratory characteristics of patients with metal-on-metal hip resurfacing, ceramic-on-ceramic and metal-on-polyethylene hip replacements. Our aim was to evaluate the relationship between metal-on-metal replacements, the levels of cobalt and chromium ions in whole blood and the absolute numbers of circulating lymphocytes. We recruited 164 patients (101 men and 63 women) with hip replacements, 106 with metal-on-metal hips and 58 with non-metal-on-metal hips, aged < 65 years, with a pre-operative diagnosis of osteoarthritis and no pre-existing immunological disorders.

Laboratory-defined T-cell lymphopenia was present in13 patients (15%) (CD8+ lymphopenia) and 11 patients (13%) (CD3+ lymphopenia) with unilateral metal-on-metal hips. There were significant differences in the absolute CD8+ lymphocyte subset counts for the metal-on-metal groups compared with each control group (p-values ranging between 0.024 and 0.046). Statistical modelling with analysis of covariance using age, gender, type of hip replacement, smoking and circulating metal ion levels, showed that circulating levels of metal ions, especially cobalt, explained the variation in absolute lymphocyte counts for almost all lymphocyte subsets.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 2 | Pages 270 - 275
1 Feb 2006
Orhan Z Cevher E Mülazimoglu L Gürcan D Alper M Araman A Özsoy Y

Ciprofloxacin hydrochloride-loaded microspheres were prepared by a spray-drying method using pectin and chitosan. The effects of different polymers and drug ratios were investigated.

The most appropriate carriers were selected by in vitro testing. A rat methicillin-resistant Staphylococcus aureus osteomyelitis model was used to evaluate the effects of the loaded microspheres.

The drug was released rapidly from the pectin carrier but this was more sustained in the chitosan formulation.

Chitosan microspheres loaded with ciprofloxacin hydrochloride were more effective for the treatment of osteomyelitis than equivalent intramuscular antibiotics.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 1 | Pages 120 - 125
1 Jan 2011
Lim H Bae J Song H Teoh SH Kim H Kum D

Medial open-wedge high tibial osteotomy has been gaining popularity in recent years, but adequate supporting material is required in the osteotomy gap for early weight-bearing and rapid union. The purpose of this study was to investigate whether the implantation of a polycaprolactone-tricalcium phosphate composite scaffold wedge would enhance healing of the osteotomy in a micro pig model. We carried out open-wedge high tibial osteotomies in 12 micro pigs aged from 12 to 16 months. A scaffold wedge was inserted into six of the osteotomies while the other six were left open. Bone healing was evaluated after three and six months using plain radiographs, CT scans, measurement of the bone mineral density and histological examination.

Complete bone union was obtained at six months in both groups. There was no collapse at the osteotomy site, loss of correction or failure of fixation in either group. Staining with haematoxylin and eosin demonstrated that there was infiltration of new bone tissue into the macropores and along the periphery of the implanted scaffold in the scaffold group. The CT scans and measurement of the bone mineral density showed that at six months specimens in the scaffold group had a higher bone mineral density than in the control group, although the implantation of the polycaprolactone-tricalcium phosphate composite scaffold wedge did not enhance healing of the osteotomy.