Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 1 | Pages 135 - 142
1 Jan 2004
Cinotti G Patti AM Vulcano A Rocca CD Polveroni G Giannicola G Postacchini F

Aternatives to autogenous bone graft for spinal fusion have been investigated for many years. It has been shown that osteoconductive materials alone do not give a rate of fusion which is comparable to that of autogenous bone graft. We analysed the effectiveness of porous ceramic loaded with cultured mesenchymal stem cells as a new graft material for spinal fusion in an animal model. Posterolateral fusion was carried out at the L4/L5 level in 40 White New Zealand rabbits using one of the following graft materials: porous ceramic granules plus cultured mesenchymal stem cells (group I); ceramic granules plus fresh autogenous bone marrow (group II); ceramic granules alone (group III); and autogenous bone graft (group IV). The animals were killed eight weeks after surgery and the spines were evaluated radiographically, by a manual palpation test and by histological analysis. The rate of fusion was significantly higher in group I compared with group III and higher, but not significantly, in group I compared with groups II and IV. In group I histological analysis showed newly formed bone in contact with the implanted granules and highly cellular bone marrow between the newly formed trabecular bone. In group II, thin trabeculae of newly formed bone were present in the peripheral portion of the fusion mass. In group III, there was a reduced mount of newly formed bone and abundant fibrous tissue. In group IV, there were thin trabeculae of newly formed bone close to the decorticated transverse processes and dead trabecular bone in the central portion of the fusion mass. In vitro cultured mesenchymal stem cells may be loaded into porous ceramic to make a graft material for spinal fusion which appears to be more effective than porous ceramic alone. Further studies are needed to investigate the medium- to long-term results of this procedure, its feasibility in the clinical setting and the most appropriate carrier for mesenchymal stem cells


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 11 | Pages 1541 - 1544
1 Nov 2009
Hosono N Miwa T Mukai Y Takenaka S Makino T Fuji T

Using the transverse processes of fresh porcine lumbar spines as an experimental model we evaluated the heat generated by a rotating burr of a high-speed drill in cutting the bone. The temperature at the drilled site reached 174°C with a diamond burr and 77°C with a steel burr. With water irrigation at a flow rate of 540 ml/hr an effective reduction in the temperature was achieved whereas irrigation with water at 180 ml/hr was much less effective. There was a significant negative correlation between the thickness of the residual bone and the temperature measured at its undersurface adjacent to the drilling site (p < 0.001).

Our data suggest that tissues neighbouring the drilled bone, especially nerve roots, can be damaged by the heat generated from the tip of a high-speed drill. Nerve-root palsy, one of the most common complications of cervical spinal surgery, may be caused by thermal damage to nerve roots arising in this manner.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 692 - 695
1 May 2006
Karataglis D Kapetanos G Lontos A Christodoulou A Christoforides J Pournaras J

The aim of this biomechanical study was to investigate the role of the dorsal vertebral cortex in transpedicular screw fixation. Moss transpedicular screws were introduced into both pedicles of each vertebra in 25 human cadaver vertebrae. The dorsal vertebral cortex and subcortical bone corresponding to the entrance site of the screw were removed on one side and preserved on the other. Biomechanical testing showed that the mean peak pull-out strength for the inserted screws, following removal of the dorsal cortex, was 956.16 N. If the dorsal cortex was preserved, the mean peak pullout strength was 1295.64 N. The mean increase was 339.48 N (26.13%; p = 0.033). The bone mineral density correlated positively with peak pull-out strength.

Preservation of the dorsal vertebral cortex at the site of insertion of the screw offers a significant increase in peak pull-out strength. This may result from engagement by the final screw threads in the denser bone of the dorsal cortex and the underlying subcortical area. Every effort should be made to preserve the dorsal vertebral cortex during insertion of transpedicular screws.