The aim of this study is to introduce and investigate the efficacy
and feasibility of a new vertebral osteotomy technique, vertebral
column decancellation (VCD), for rigid thoracolumbar kyphotic deformity
(TLKD) secondary to ankylosing spondylitis (AS). We took 39 patients from between January 2009 and January 2013
(26 male, 13 female, mean age 37.4 years, 28 to 54) with AS and
a TLKD who underwent VCD (VCD group) and compared their outcome
with 45 patients (31 male, 14 female, mean age 34.8 years, 23 to
47) with AS and TLKD, who underwent pedicle subtraction osteotomy
(PSO group), according to the same selection criteria. The technique
of VCD was performed at single vertebral level in the thoracolumbar
region of AS patients according to classification of AS kyphotic
deformity. Pre- and post-operative chin-brow vertical angle (CBVA),
sagittal vertical axis (SVA) and sagittal Cobb angle in the thoracolumbar
region were reviewed in the VCD and PSO groups. Intra- , post-operative
and general complications were analysed in both group.Aims
Patients and Methods
Few studies have examined the order in which
a
Segmental vessel ligation during anterior spinal surgery has been associated with paraplegia. However, the incidence and risk factors for this devastating complication are debated. We reviewed 346 consecutive paediatric and adolescent patients ranging in age from three to 18 years who underwent surgery for anterior spinal deformity through a thoracic or thoracoabdominal approach, during which 2651 segmental vessels were ligated. There were 173 patients with idiopathic scoliosis, 80 with congenital scoliosis or kyphosis, 43 with neuromuscular and 31 with syndromic scoliosis, 12 with a scoliosis associated with intraspinal abnormalities, and seven with a kyphosis. There was only one neurological complication, which occurred in a patient with a 127° congenital thoracic scoliosis due to a unilateral unsegmented bar with contralateral hemivertebrae at the same level associated with a thoracic diastematomyelia and tethered cord. This patient was operated upon early in the series, when intra-operative spinal cord monitoring was not available. Intra-operative spinal cord monitoring with the use of somatosensory evoked potentials alone or with motor evoked potentials was performed in 331 patients. This showed no evidence of signal change after ligation of the segmental vessels. In our experience, unilateral segmental vessel ligation carries no risk of neurological damage to the spinal cord unless performed in patients with complex congenital spinal deformities occurring primarily in the thoracic spine and associated with intraspinal anomalies at the same level, where the vascular supply to the cord may be abnormal.