Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 100-B, Issue 5 | Pages 559 - 565
1 May 2018
Bartlett JD Lawrence JE Stewart ME Nakano N Khanduja V

Aims. The aim of this study was to assess the current evidence relating to the benefits of virtual reality (VR) simulation in orthopaedic surgical training, and to identify areas of future research. Materials and Methods. A literature search using the MEDLINE, Embase, and Google Scholar databases was performed. The results’ titles, abstracts, and references were examined for relevance. Results. A total of 31 articles published between 2004 and 2016 and relating to the objective validity and efficacy of specific virtual reality orthopaedic surgical simulators were identified. We found 18 studies demonstrating the construct validity of 16 different orthopaedic virtual reality simulators by comparing expert and novice performance. Eight studies have demonstrated skill acquisition on a simulator by showing improvements in performance with repeated use. A further five studies have demonstrated measurable improvements in operating theatre performance following a period of virtual reality simulator training. Conclusion. The demonstration of ‘real-world’ benefits from the use of VR simulation in knee and shoulder arthroscopy is promising. However, evidence supporting its utility in other forms of orthopaedic surgery is lacking. Further studies of validity and utility should be combined with robust analyses of the cost efficiency of validated simulators to justify the financial investment required for their use in orthopaedic training. Cite this article: Bone Joint J 2018;100-B:559–65


The Bone & Joint Journal
Vol. 102-B, Issue 5 | Pages 568 - 572
1 May 2020
McDonnell JM Ahern DP Ó Doinn T Gibbons D Rodrigues KN Birch N Butler JS

Continuous technical improvement in spinal surgical procedures, with the aim of enhancing patient outcomes, can be assisted by the deployment of advanced technologies including navigation, intraoperative CT imaging, and surgical robots. The latest generation of robotic surgical systems allows the simultaneous application of a range of digital features that provide the surgeon with an improved view of the surgical field, often through a narrow portal.

There is emerging evidence that procedure-related complications and intraoperative blood loss can be reduced if the new technologies are used by appropriately trained surgeons. Acceptance of the role of surgical robots has increased in recent years among a number of surgical specialities including general surgery, neurosurgery, and orthopaedic surgeons performing major joint arthroplasty. However, ethical challenges have emerged with the rollout of these innovations, such as ensuring surgeon competence in the use of surgical robotics and avoiding financial conflicts of interest. Therefore, it is essential that trainees aspiring to become spinal surgeons as well as established spinal specialists should develop the necessary skills to use robotic technology safely and effectively and understand the ethical framework within which the technology is introduced.

Traditional and more recently developed platforms exist to aid skill acquisition and surgical training which are described.

The aim of this narrative review is to describe the role of surgical robotics in spinal surgery, describe measures of proficiency, and present the range of training platforms that institutions can use to ensure they employ confident spine surgeons adequately prepared for the era of robotic spinal surgery.

Cite this article: Bone Joint J 2020;102-B(5):568–572.


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 241 - 245
1 Mar 2019
Leaver T Johnson B Lampard J Aarvold A Uglow M

Aims

The aim of this study was to quantify the risk of developing cancer from the exposure to radiation associated with surgery to correct limb deformities in children.

Patients and Methods

A total of 35 children were studied. There were 19 girls and 16 boys. Their mean age was 11.9 years (2 to 18) at the time of surgery. Details of the radiological examinations were recorded during gradual correction using a Taylor Spatial Frame. The dose area product for each radiograph was obtained from the Computerised Radiology Information System database. The effective dose in millisieverts (mSv) was calculated using conversion coefficients for the anatomical area. The lifetime risk of developing cancer was calculated using government-approved Health Protection Agency reports, accounting for the age and gender of the child.