The aim of this study was to describe the incidence of refractures among children, following fractures of all long bones, and to identify when the risk of refracture decreases. All patients aged under 16 years with a fracture that had occurred in a bone with ongoing growth (open physis) from 1 May 2015 to 31 December 2020 were retrieved from the Swedish Fracture Register. A new fracture in the same segment within one year of the primary fracture was regarded as a refracture. Fracture localization, sex, lateral distribution, and time from primary fracture to refracture were analyzed for all long bones.Aims
Methods
We analysed retrospectively the risk factors
leading to femoral overgrowth after flexible intramedullary nailing
in 43 children (mean age 7.1 years (3.6 to 12.0)) with fractures
of the shaft of the femur. We reviewed their demographic data, mechanism
of injury, associated injuries, the type and location of the fractures,
the nail–canal diameter (NCD) ratios and femoral overgrowth at a
mean follow-up of 40.7 months (25.2 to 92.7). At that time, the
children were divided into two groups, those with femoral overgrowth
of <
1 cm (Group 1), and those with overgrowth of ≥ 1 cm (Group
2). The mean femoral overgrowth of all patients was 0.6 cm at final
follow-up. Overgrowth of ≥ 1 cm was noted in 11 children (25.6%).
The NCD ratio was significantly lower in Group 2 than in Group 1,
with an odds ratio of 30.0 (p = 0.003). We believe that a low NCD ratio is an indicator of an unstable
configuration with flexible intramedullary nailing, and have identified
an association between a low NCD ratio and femoral overgrowth resulting
in leg-length discrepancy after flexible intramedullary nailing
in paediatric femoral
Current American Academy of Orthopaedic Surgeons (AAOS) guidelines for treating femoral fractures in children aged two to six years recommend early spica casting although some individuals have recommended intramedullary stabilization in this age group. The purpose of this study was to compare the treatment and family burden of care of spica casting and flexible intramedullary nailing in this age group. Patients aged two to six years old with acute, non-pathological femur fractures were prospectively enrolled at one of three tertiary children’s hospitals. Either early closed reduction with spica cast application or flexible intramedullary nailing was accomplished under general anaesthesia. The treatment method was selected after discussion of the options by the surgeon with the family. Data were prospectively collected on patient demographics, fracture characteristics, complications, pain medication, and union. The Impact on Family Scale was obtained at the six-week follow-up visit. In all, 75 patients were included in the study: 39 in the spica group and 36 in the nailing group. The mean age of the spica group was 2.71 (2.0 to 6.9) years and the mean age of the nailing group was 3.16 (2.0 to 6.9) years.Aims
Methods
The aim of this study was to utilize a national paediatric inpatient database to determine whether obesity influences the operative management and inpatient outcomes of paediatric limb fractures. The Kids’ Inpatient Database (KID) was used to evaluate children between birth and 17 years of age, from 1997 and 2012, who had undergone open and closed treatment of humeral, radial and ulna, femoral, tibial, and ankle fractures. Demographics, hospital charges, lengths of stay (LOS), and complications were analyzed.Aims
Patients and Methods
Elastic stable intramedullary nailing (ESIN)
is generally acknowledged to be the treatment of choice for displaced diaphyseal
femoral fractures in children over the age of three years, although
complication rates of up to 50% are described. Pre-bending the nails
is recommended, but there are no published data to support this.
Using synthetic bones and a standardised simulated fracture, we
performed biomechanical testing to determine the influence on the
stability of the fracture of pre-bending the nails before implantation.
Standard ESIN was performed on 24 synthetic femoral models with
a spiral fracture. In eight cases the nails were inserted without
any pre-bending, in a further eight cases they were pre-bent to
30° and in the last group of eight cases they were pre-bent to 60°. Mechanical
testing revealed that pre-bending to 60° produced a significant
increase in the stiffness or stability of the fracture. Pre-bending
to 60° showed a significant positive influence on the stiffness
compared with unbent nails. Pre-bending to 30° improved stiffness
only slightly. These findings validate the recommendations for pre-bending,
but the degree of pre-bend should exceed 30°. Adopting higher degrees
of pre-bending should improve stability in spiral fractures and
reduce the complications of varus deformity and shortening.
End caps are intended to prevent nail migration
(push-out) in elastic stable intramedullary nailing. The aim of
this study was to investigate the force at failure with and without
end caps, and whether different insertion angles of nails and end caps
would alter that force at failure. Simulated oblique fractures of the diaphysis were created in
15 artificial paediatric femurs. Titanium Elastic Nails with end
caps were inserted at angles of 45°, 55° and 65° in five specimens
for each angle to create three study groups. Biomechanical testing
was performed with axial compression until failure. An identical
fracture was created in four small adult cadaveric femurs harvested
from two donors (both female, aged 81 and 85 years, height 149 cm and
156 cm, respectively). All femurs were tested without and subsequently
with end caps inserted at 45°. In the artificial femurs, maximum force was not significantly
different between the three groups (p = 0.613). Push-out force was
significantly higher in the cadaveric specimens with the use of
end caps by an up to sixfold load increase (830 N, standard deviation
(SD) 280 These results indicate that the nail and end cap insertion angle
can be varied within 20° without altering construct stability and
that the risk of elastic stable intramedullary nailing push–out
can be effectively reduced by the use of end caps. Cite this article:
Between 2005 and 2010 ten consecutive children
with high-energy open diaphyseal tibial fractures were treated by early
reduction and application of a programmable circular external fixator.
They were all male with a mean age of 11.5 years (5.2 to 15.4),
and they were followed for a mean of 34.5 months (6 to 77). Full
weight-bearing was allowed immediately post-operatively. The mean
time from application to removal of the frame was 16 weeks (12 to
21). The mean deformity following removal of the frame was 0.15°
(0° to 1.5°) of coronal angulation, 0.2° (0° to 2°) sagittal angulation,
1.1 mm (0 to 10) coronal translation, and 0.5 mm (0 to 2) sagittal
translation. All patients achieved consolidated bony union and satisfactory
wound healing. There were no cases of delayed or nonunion, compartment
syndrome or neurovascular injury. Four patients had a mild superficial
pin site infection; all settled with a single course of oral antibiotics.
No patient had a deep infection or re-fracture following removal
of the frame. The time to union was comparable with, or better than,
other published methods of stabilisation for these injuries. The
stable fixator configuration not only facilitates management of
the accompanying soft-tissue injury but enables anatomical post-injury
alignment, which is important in view of the limited remodelling
potential of the tibia in children aged >
ten years. Where appropriate
expertise exists, we recommend this technique for the management
of high-energy open tibial fractures in children.