Massive endoprostheses rely on extra-cortical bone bridging (ECBB)
to enhance fixation. The aim of this study was to investigate the
role of selective laser sintered (SLS) porous collars in augmenting
the osseointegration of these prostheses. The two novel designs of porous SLS collars, one with small pores
(Ø700 μm, SP) and one with large pores (Ø1500 μm, LP), were compared
in an ovine tibial diaphyseal model. Osseointegration of these collars
was compared with that of a clinically used solid, grooved design
(G). At six months post-operatively, the ovine tibias were retrieved and
underwent radiological and histological analysis.Aims
Materials and Methods
The aims of this retrospective study were to report the feasibility
of using 3D-printing technology for patients with a pelvic tumour
who underwent reconstruction. A total of 35 patients underwent resection of a pelvic tumour
and reconstruction using 3D-printed endoprostheses between September
2013 and December 2015. According to Enneking’s classification of
bone defects, there were three Type I lesions, 12 Type II+III lesions,
five Type I+II lesions, two Type I+II+III lesions, ten type I+II+IV
lesions and three type I+II+III+IV lesions. A total of three patients
underwent reconstruction using an iliac prosthesis, 12 using a standard
hemipelvic prosthesis and 20 using a screw-rod connected hemipelvic
prosthesis.Aims
Patients and Methods
We describe a consecutive series of five patients with bone or soft-tissue sarcomas of the elbow and intra-articular extension treated by complex soft tissue, allograft bone and prosthetic joint replacement after wide extra-articular