Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 4 | Pages 636 - 642
1 Jul 1999
Shahane SA Ibbotson C Strachan R Bickerstaff D

We designed an experimental study to prove the existence of the popliteofibular ligament (PFL) and to define its role in providing static stability of the knee. We also examined the contribution of the lateral collateral ligament (LCL). We found this ligament to be present in all eight human cadaver knees examined. These specimens were mounted on a specially designed rig and subjected to posterior, varus and external rotational forces. We used the technique of selective sectioning of ligaments and measured the displacement with a constant force applied, before and after its division. We recorded the displacement in primary posterior translation, coupled external rotation, primary varus angulation and primary external rotation. Statistical analysis using the standard error of the mean by plotting 95% confidence intervals, was used to evaluate the results. The PFL had a significant role in preventing excessive posterior translation and varus angulation, and in restricting excessive primary and coupled external rotation. Isolated section of the belly of popliteus did not cause significant posterolateral instability of the knee. The LCL was also seen to act as a primary restraint against varus angulation and secondary restraint against external rotation and posterior displacement. Our findings showed that in knees with isolated disruption of the PFL stability was restored when it was reconstructed. However in knees in which the LCL was also disrupted, isolated reconstruction of the PFL did not restore stability


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1230 - 1237
1 Oct 2019
Kayani B Konan S Horriat S Ibrahim MS Haddad FS

Aims

The aim of this study was to assess the effect of posterior cruciate ligament (PCL) resection on flexion-extension gaps, mediolateral soft-tissue laxity, fixed flexion deformity (FFD), and limb alignment during posterior-stabilized (PS) total knee arthroplasty (TKA).

Patients and Methods

This prospective study included 110 patients with symptomatic osteoarthritis of the knee undergoing primary robot-assisted PS TKA. All operations were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess gaps before and after PCL resection in extension and 90° knee flexion. Measurements were made after excision of the anterior cruciate ligament and prior to bone resection. There were 54 men (49.1%) and 56 women (50.9%) with a mean age of 68 years (sd 6.2) at the time of surgery. The mean preoperative hip-knee-ankle deformity was 4.1° varus (sd 3.4).


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 442 - 448
1 Apr 2020
Kayani B Konan S Ahmed SS Chang JS Ayuob A Haddad FS

Aims

The objectives of this study were to assess the effect of anterior cruciate ligament (ACL) resection on flexion-extension gaps, mediolateral soft tissue laxity, maximum knee extension, and limb alignment during primary total knee arthroplasty (TKA).

Methods

This prospective study included 140 patients with symptomatic knee osteoarthritis undergoing primary robotic-arm assisted TKA. All operative procedures were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess study outcomes pre- and post-ACL resection with knee extension and 90° knee flexion. This study included 76 males (54.3%) and 64 females (45.7%) with a mean age of 64.1 years (SD 6.8) at time of surgery. Mean preoperative hip-knee-ankle deformity was 6.1° varus (SD 4.6° varus).


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1169 - 1172
1 Sep 2006
Khanduja V Somayaji HS Harnett P Utukuri M Dowd GSE

We report a retrospective analysis of the results of combined arthroscopically-assisted posterior cruciate ligament reconstruction and open reconstruction of the posterolateral corner in 19 patients with chronic (three or more months) symptomatic instability and pain in the knee.

All the operations were performed between 1996 and 2003 and all the patients were assessed pre- and post-operatively by physical examination and by applying three different ligament rating scores. All also had weight-bearing radiographs, MR scans and an examination under anaesthesia and arthroscopy pre-operatively. The posterior cruciate ligament reconstruction was performed using an arthroscopically-assisted single anterolateral bundle technique and the posterolateral corner structures were reconstructed using an open Larson type of tenodesis.

The mean follow up was 66.8 months (24 to 110). Pre-operatively, all the patients had a grade III posterior sag according to Clancy and demonstrated more than 20° of external rotation compared with the opposite normal knee on the Dial test. Post-operatively, seven patients (37%) had no residual posterior sag, 11 (58%) had a grade I posterior sag and one (5%) had a grade II posterior sag. In five patients (26%) there was persistent minimal posterolateral laxity. The Lysholm score improved from a mean of 41.2 (28 to 53) to 76.5 (57 to 100) (p = 0.0001) and the Tegner score from a mean of 2.6 (1 to 4) to 6.4 (4 to 9) (p = 0.0001).

We conclude that while a combined reconstruction of chronic posterior cruciate ligament and posterolateral corner instability improves the function of the knee, it does not restore complete stability.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 1 | Pages 36 - 40
1 Jan 2005
Mountney J Senavongse W Amis AA Thomas NP

The tensile strength of the medial patellofemoral ligament (MPFL), and of surgical procedures which reconstitute it, are unknown. Ten fresh cadaver knees were prepared by isolating the patella, leaving only the MPFL as its attachment to the medial femoral condyle. The MPFL was either repaired by using a Kessler suture or reconstructed using either bone anchors or one of two tendon grafting techniques. The tensile strength and the displacement to peak force of the MPFL were then measured using an Instron materials-testing machine.

The MPFL was found to have a mean tensile strength of 208 N (SD 90) at 26 mm (SD 7) of displacement. The strengths of the other techniques were: sutures alone, 37 N (SD 27); bone anchors plus sutures, 142 N (SD 39); blind-tunnel tendon graft, 126 N (SD 21); and through-tunnel tendon graft, 195 N (SD 66). The last was not significantly weaker than the MPFL itself.