The aim of this study was to determine the impact of the severity of anaemia on postoperative complications following total hip arthroplasty (THA) and total knee arthroplasty (TKA). A retrospective cohort study was conducted using the American College of Surgeons National Quality Improvement Program (ACS-NSQIP) database. All patients who underwent primary TKA or THA between January 2012 and December 2017 were identified and stratified based upon hematocrit level. In this analysis, we defined anaemia as packed cell volume (Hct) < 36% for women and < 39% for men, and further stratified anaemia as mild anaemia (Hct 33% to 36% for women, Hct 33% to 39% for men), and moderate to severe (Hct < 33% for both men and women). Univariate and multivariate analyses were used to evaluate the incidence of multiple adverse events within 30 days of arthroplasty.Aims
Methods
Bactericidal levels of antibiotics are difficult
to achieve in infected total joint arthroplasty when intravenous antibiotics
or antibiotic-loaded cement spacers are used, but intra-articular
(IA) delivery of antibiotics has been effective in several studies.
This paper describes a protocol for IA delivery of antibiotics in
infected knee arthroplasty, and summarises the results of a pharmacokinetic
study and two clinical follow-up studies of especially difficult
groups: methicillin-resistant Cite this article:
Nanotechnology is the study, production and controlled
manipulation of materials with a grain size <
100 nm. At this
level, the laws of classical mechanics fall away and those of quantum
mechanics take over, resulting in unique behaviour of matter in
terms of melting point, conductivity and reactivity. Additionally,
and likely more significant, as grain size decreases, the ratio
of surface area to volume drastically increases, allowing for greater interaction
between implants and the surrounding cellular environment. This
favourable increase in surface area plays an important role in mesenchymal
cell differentiation and ultimately bone–implant interactions. Basic science and translational research have revealed important
potential applications for nanotechnology in orthopaedic surgery,
particularly with regard to improving the interaction between implants
and host bone. Nanophase materials more closely match the architecture
of native trabecular bone, thereby greatly improving the osseo-integration
of orthopaedic implants. Nanophase-coated prostheses can also reduce
bacterial adhesion more than conventionally surfaced prostheses.
Nanophase selenium has shown great promise when used for tumour
reconstructions, as has nanophase silver in the management of traumatic
wounds. Nanophase silver may significantly improve healing of peripheral
nerve injuries, and nanophase gold has powerful anti-inflammatory
effects on tendon inflammation. Considerable advances must be made in our understanding of the
potential health risks of production, implantation and wear patterns
of nanophase devices before they are approved for clinical use.
Their potential, however, is considerable, and is likely to benefit
us all in the future. Cite this article:
Peri-prosthetic osteolysis and subsequent aseptic
loosening is the most common reason for revising total hip replacements.
Wear particles originating from the prosthetic components interact
with multiple cell types in the peri-prosthetic region resulting
in an inflammatory process that ultimately leads to peri-prosthetic
bone loss. These cells include macrophages, osteoclasts, osteoblasts
and fibroblasts. The majority of research in peri-prosthetic osteolysis
has concentrated on the role played by osteoclasts and macrophages.
The purpose of this review is to assess the role of the osteoblast
in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts
and contribute to the osteolytic process by two mechanisms. First,
particles and metallic ions have been shown to inhibit the osteoblast
in terms of its ability to secrete mineralised bone matrix, by reducing
calcium deposition, alkaline phosphatase activity and its ability
to proliferate. Secondly, particles and metallic ions have been
shown to stimulate osteoblasts to produce pro inflammatory mediators Cite this article:
The most frequent cause of failure after total
hip replacement in all reported arthroplasty registries is peri-prosthetic
osteolysis. Osteolysis is an active biological process initiated
in response to wear debris. The eventual response to this process
is the activation of macrophages and loss of bone. Activation of macrophages initiates a complex biological cascade
resulting in the final common pathway of an increase in osteolytic
activity. The biological initiators, mechanisms for and regulation
of this process are beginning to be understood. This article explores current
concepts in the causes of, and underlying biological mechanism resulting
in peri-prosthetic osteolysis, reviewing the current basic science
and clinical literature surrounding the topic.