Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 865 - 874
1 Jul 2012
Mills LA Simpson AHRW

This review is aimed at clinicians appraising preclinical trauma studies and researchers investigating compromised bone healing or novel treatments for fractures. It categorises the clinical scenarios of poor healing of fractures and attempts to match them with the appropriate animal models in the literature.

We performed an extensive literature search of animal models of long bone fracture repair/nonunion and grouped the resulting studies according to the clinical scenario they were attempting to reflect; we then scrutinised them for their reliability and accuracy in reproducing that clinical scenario.

Models for normal fracture repair (primary and secondary), delayed union, nonunion (atrophic and hypertrophic), segmental defects and fractures at risk of impaired healing were identified. Their accuracy in reflecting the clinical scenario ranged greatly and the reliability of reproducing the scenario ranged from 100% to 40%.

It is vital to know the limitations and success of each model when considering its application.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1545 - 1550
1 Nov 2007
Koslowsky TC Mader K Dargel J Koebke J Hellmich M Pennig D

We have evaluated four different fixation techniques for the reconstruction of a standard Mason type-III fracture of the radial head in a sawbone model. The outcome measurements were the quality of the reduction, and stability.

A total of 96 fractures was created. Six surgeons were involved in the study and each reconstructed 16 fractures with 1.6 mm fine-threaded wires (Fragment Fixation System (FFS)), T-miniplates, 2 mm miniscrews and 2 mm Kirschner (K-) wires; four fractures being allocated to each method using a standard reconstruction procedure.

The quality of the reduction was measured after definitive fixation. Biomechanical testing was performed using a transverse plane shear load in two directions to the implants (parallel and perpendicular) with respect to ultimate failure load and displacement at 50 N.

A significantly better quality of reduction was achieved using the FFS wires (Tukey’s post hoc tests, p < 0.001) than with the other devices with a mean step in the articular surface and the radial neck of 1.04 mm (sd 0.96) for the FFS, 4.25 mm (sd 1.29) for the miniplates, 2.21 mm (sd 1.06) for the miniscrews and 2.54 mm (sd 0.98) for the K-wires. The quality of reduction was similar for K-wires and miniscrews, but poor for miniplates.

The ultimate failure load was similar for the FFS wires (parallel, 196.8 N (sd 46.8), perpendicular, 212.5 N (sd 25.6)), miniscrews (parallel, 211.8 N (sd 47.9), perpendicular, 208.0 N (sd 65.9)) and K-wires (parallel, 200.4 N (sd 54.5), perpendicular, 165.2 N (sd 37.9)), but significantly worse (Tukey’s post hoc tests, p < 0.001) for the miniplates (parallel, 101.6 N (sd 43.1), perpendicular, 122.7 N (sd 40.7)). There was a significant difference in the displacement at 50 N for the miniplate (parallel, 4.8 mm (sd 2.8), perpendicular, 4.8 mm (sd 1.7)) vs FFS (parallel, 2.1 mm (sd 0.8), perpendicular, 1.9 mm (sd 0.7)), miniscrews (parallel, 1.8 mm (sd 0.5), perpendicular, 2.3 mm (sd 0.8)) and K-wires (parallel, 2.2 mm (sd 1.8), perpendicular, 2.4 mm (sd 0.7; Tukey’s post hoc tests, p < 0.001)).

The fixation of a standard Mason type-III fracture in a sawbone model using the FFS system provides a better quality of reduction than that when using conventional techniques. There was a significantly better stability using FFS implants, miniscrews and K-wires than when using miniplates.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1257 - 1263
1 Sep 2006
Richter M Droste P Goesling T Zech S Krettek C

Different calcaneal plates with locked screws were compared in an experimental model of a calcaneal fracture. Four plate models were tested, three with uniaxially-locked screws (Synthes, Newdeal, Darco), and one with polyaxially-locked screws (90° ± 15°) (Rimbus). Synthetic calcanei were osteotomised to create a fracture model and then fixed with the plates and screws. Seven specimens for each plate model were subjected to cyclic loading (preload 20 N, 1000 cycles at 800 N, 0.75 mm/s), and load to failure (0.75 mm/s).

During cyclic loading, the plate with polyaxially-locked screws (Rimbus) showed significantly lower displacement in the primary loading direction than the plates with uniaxially-locked screws (mean values of maximum displacement during cyclic loading: Rimbus, 3.13 mm (sd 0.68); Synthes, 3.46 mm (sd 1.25); Darco, 4.48 mm (sd 3.17); Newdeal, 5.02 mm (sd 3.79); one-way analysis of variance, p < 0.001).

The increased stability of a plate with polyaxially-locked screws demonstrated during cyclic loading compared with plates with uniaxially-locked screws may be beneficial for clinical use.