Aims. This study aimed to analyze the accuracy and errors associated with 3D-printed,
Aims. This study aimed to compare the performance of survival prediction models for bone metastases of the extremities (BM-E) with pathological fractures in an Asian cohort, and investigate patient characteristics associated with survival. Methods. This retrospective cohort study included 469 patients, who underwent surgery for BM-E between January 2009 and March 2022 at a tertiary hospital in South Korea. Postoperative survival was calculated using the PATHFx3.0, SPRING13, OPTIModel, SORG, and IOR models. Model performance was assessed with area under the curve (AUC), calibration curve, Brier score, and decision curve analysis. Cox regression analyses were performed to evaluate the factors contributing to survival. Results. The SORG model demonstrated the highest discriminatory accuracy with AUC (0.80 (95% confidence interval (CI) 0.76 to 0.85)) at 12 months. In calibration analysis, the PATHfx3.0 and OPTIModel models underestimated survival, while the SPRING13 and IOR models overestimated survival. The SORG model exhibited excellent calibration with intercepts of 0.10 (95% CI -0.13 to 0.33) at 12 months. The SORG model also had lower Brier scores than the null score at three and 12 months, indicating good overall performance. Decision curve analysis showed that all five survival prediction models provided greater net benefit than the default strategy of operating on either all or no patients. Rapid growth cancer and low serum albumin levels were associated with three-, six-, and 12-month survival. Conclusion. State-of-art survival prediction models for BM-E (PATHFx3.0, SPRING13, OPTIModel, SORG, and IOR models) are useful clinical tools for orthopaedic surgeons in the decision-making process for the treatment in Asian patients, with SORG models offering the best predictive performance. Rapid growth cancer and serum albumin level are independent, statistically significant factors contributing to survival following surgery of BM-E. Further refinement of survival prediction models will bring about informed and
Aims. Dislocation of the hip remains a major complication after periacetabular tumour resection and endoprosthetic reconstruction. The position of the acetabular component is an important modifiable factor for surgeons in determining the risk of postoperative dislocation. We investigated the significance of horizontal, vertical, and sagittal displacement of the hip centre of rotation (COR) on postoperative dislocation using a CT-based 3D model, as well as other potential risk factors for dislocation. Methods. A total of 122 patients who underwent reconstruction following resection of periacetabular tumour between January 2011 and January 2020 were studied. The risk factors for dislocation were investigated with univariate and multivariate logistic regression analysis on
Aims. Surgical site infection (SSI) after soft-tissue sarcoma (STS) resection is a serious complication. The purpose of this retrospective study was to investigate the risk factors for SSI after STS resection, and to develop a nomogram that allows
Aims. There is an increased risk of dislocation of the hip after the resection of a periacetabular tumour and endoprosthetic reconstruction of the defect in the hemipelvis. The aim of this study was to determine the rate and timing of dislocation and to identify its risk factors. Methods. To determine the dislocation rate, we conducted a retrospective single-institution study of 441 patients with a periacetabular tumour who had undergone a standard modular hemipelvic endoprosthetic reconstruction between 2003 and 2019. After excluding ineligible patients, 420 patients were enrolled.
Controversy exists as to what should be considered a safe resection margin to minimize local recurrence in high-grade pelvic chondrosarcomas (CS). The aim of this study is to quantify what is a safe margin of resection for high-grade CS of the pelvis. We retrospectively identified 105 non-metastatic patients with high-grade pelvic CS of bone who underwent surgery (limb salvage/amputations) between 2000 and 2018. There were 82 (78%) male and 23 (22%) female patients with a mean age of 55 years (26 to 84). The majority of the patients underwent limb salvage surgery (n = 82; 78%) compared to 23 (22%) who had amputation. In total, 66 (64%) patients were grade 2 CS compared to 38 (36%) grade 3 CS. All patients were assessed for stage, pelvic anatomical classification, type of resection and reconstruction, margin status, local recurrence, distant recurrence, and overall survival. Surgical margins were stratified into millimetres: < 1 mm; > 1 mm but < 2 mm; and > 2 mm.Aims
Methods
Our aim was to develop and validate nomograms that would predict the cumulative incidence of sarcoma-specific death (CISSD) and disease progression (CIDP) in patients with localized high-grade primary central and dedifferentiated chondrosarcoma. The study population consisted of 391 patients from two international sarcoma centres (development cohort) who had undergone definitive surgery for a localized high-grade (histological grade II or III) conventional primary central chondrosarcoma or dedifferentiated chondrosarcoma. Disease progression captured the first event of either metastasis or local recurrence. An independent cohort of 221 patients from three additional hospitals was used for external validation. Two nomograms were internally and externally validated for discrimination (c-index) and calibration plot.Aims
Methods
Iliac wing (Type I) and iliosacral (Type I/IV) pelvic resections for a primary bone tumour create a large segmental defect in the pelvic ring. The management of this defect is controversial as the surgeon may choose to reconstruct it or not. When no reconstruction is undertaken, the residual ilium collapses back onto the remaining sacrum forming an iliosacral pseudarthrosis. The aim of this study was to evaluate the long-term oncological outcome, complications, and functional outcome after pelvic resection without reconstruction. Between 1989 and 2015, 32 patients underwent a Type I or Type I/IV pelvic resection without reconstruction for a primary bone tumour. There were 21 men and 11 women with a mean age of 35 years (15 to 85). The most common diagnosis was chondrosarcoma (50%, n = 16). Local recurrence-free, metastasis-free, and overall survival were assessed using the Kaplan-Meier method. Patient function was evaluated using the Musculoskeletal Tumour Society (MSTS) and Toronto Extremity Salvage Score (TESS).Aims
Methods
Accurate estimations of the risk of fracture due to metastatic bone disease in the femur is essential in order to avoid both under-treatment and over-treatment of patients with an impending pathological fracture. The purpose of the current retrospective in vivo study was to use CT-based finite element analyses (CTFEA) to identify a clear quantitative differentiating factor between patients who are at imminent risk of fracturing their femur and those who are not, and to identify the exact location of maximal weakness where the fracture is most likely to occur. Data were collected on 82 patients with femoral metastatic bone disease, 41 of whom did not undergo prophylactic fixation. A total of 15 had a pathological fracture within six months following the CT scan, and 26 were fracture-free during the five months following the scan. The Mirels score and strain fold ratio (SFR) based on CTFEA was computed for all patients. A SFR value of 1.48 was used as the threshold for a pathological fracture. The sensitivity, specificity, positive, and negative predicted values for Mirels score and SFR predictions were computed for nine patients who fractured and 24 who did not, as well as a comparison of areas under the receiver operating characteristic curves (AUC of the ROC curves).Aims
Methods
Aims
Patients and Methods
We present a retrospective review of patients treated with extracorporeally
irradiated allografts for primary and secondary bone tumours with
the mid- and long-term survivorship and the functional and radiographic
outcomes. A total of 113 of 116 (97.4%) patients who were treated with
extracorporeally irradiated allografts between 1996 and 2014 were
followed up. Forms of treatment included reconstructions, prostheses
and composite reconstructions, both with and without vascularised
grafts. Survivorship was determined by the Kaplan-Meier method.
Clinical outcomes were assessed using the Musculoskeletal Tumor
Society (MSTS) scoring system, the Toronto Extremity Salvage Score
(TESS) and Quality of Life-C30 (QLQ-30) measures. Radiographic outcomes
were assessed using the International Society of Limb Salvage (ISOLS)
radiographic scoring system.Aims
Patients and Methods
Previously, we showed that case-specific non-linear
finite element (FE) models are better at predicting the load to failure
of metastatic femora than experienced clinicians. In this study
we improved our FE modelling and increased the number of femora
and characteristics of the lesions. We retested the robustness of
the FE predictions and assessed why clinicians have difficulty in
estimating the load to failure of metastatic femora. A total of
20 femora with and without artificial metastases were mechanically
loaded until failure. These experiments were simulated using case-specific
FE models. Six clinicians ranked the femora on load to failure and
reported their ranking strategies. The experimental load to failure
for intact and metastatic femora was well predicted by the FE models (R2 =
0.90 and R2 = 0.93, respectively). Ranking metastatic
femora on load to failure was well performed by the FE models (τ =
0.87), but not by the clinicians (0.11 <
τ <
0.42). Both the
FE models and the clinicians allowed for the characteristics of
the lesions, but only the FE models incorporated the initial bone
strength, which is essential for accurately predicting the risk
of fracture. Accurate prediction of the risk of fracture should
be made possible for clinicians by further developing FE models.
We report our experience of using a computer
navigation system to aid resection of malignant musculoskeletal tumours
of the pelvis and limbs and, where appropriate, their subsequent
reconstruction. We also highlight circumstances in which navigation
should be used with caution. We resected a musculoskeletal tumour from 18 patients (15 male,
three female, mean age of 30 years (13 to 75) using commercially
available computer navigation software (Orthomap 3D) and assessed
its impact on the accuracy of our surgery. Of nine pelvic tumours,
three had a biological reconstruction with extracorporeal irradiation,
four underwent endoprosthetic replacement (EPR) and two required
no bony reconstruction. There were eight tumours of the bones of
the limbs. Four diaphyseal tumours underwent biological reconstruction.
Two patients with a sarcoma of the proximal femur and two with a
sarcoma of the proximal humerus underwent extra-articular resection
and, where appropriate, EPR. One soft-tissue sarcoma of the adductor
compartment which involved the femur was resected and reconstructed
using an EPR. Computer navigation was used to aid reconstruction
in eight patients. Histological examination of the resected specimens revealed tumour-free
margins in all patients. Post-operative radiographs and CT showed
that the resection and reconstruction had been carried out as planned
in all patients where navigation was used. In two patients, computer
navigation had to be abandoned and the operation was completed under
CT and radiological control. The use of computer navigation in musculoskeletal oncology allows
accurate identification of the local anatomy and can define the
extent of the tumour and proposed resection margins. Furthermore,
it helps in reconstruction of limb length, rotation and overall
alignment after resection of an appendicular tumour. Cite this article: