header advert
Results 1 - 5 of 5
Results per page:
The Bone & Joint Journal
Vol. 97-B, Issue 8 | Pages 1144 - 1151
1 Aug 2015
Waki T Lee SY Niikura T Iwakura T Dogaki Y Okumachi E Kuroda R Kurosaka M

MicroRNAs (miRNAs ) are small non-coding RNAs that regulate gene expression. We hypothesised that the functions of certain miRNAs and changes to their patterns of expression may be crucial in the pathogenesis of nonunion. Healing fractures and atrophic nonunions produced by periosteal cauterisation were created in the femora of 94 rats, with 1:1 group allocation. At post-fracture days three, seven, ten, 14, 21 and 28, miRNAs were extracted from the newly generated tissue at the fracture site. Microarray and real-time polymerase chain reaction (PCR) analyses of day 14 samples revealed that five miRNAs, miR-31a-3p, miR-31a-5p, miR-146a-5p, miR-146b-5p and miR-223-3p, were highly upregulated in nonunion. Real-time PCR analysis further revealed that, in nonunion, the expression levels of all five of these miRNAs peaked on day 14 and declined thereafter. . Our results suggest that miR-31a-3p, miR-31a-5p, miR-146a-5p, miR-146b-5p and miR-223-3p may play an important role in the development of nonunion. These findings add to the understanding of the molecular mechanism for nonunion formation and may lead to the development of novel therapeutic strategies for its treatment. Cite this article: Bone Joint J 2015; 97-B:1144–51


The Bone & Joint Journal
Vol. 97-B, Issue 9 | Pages 1279 - 1283
1 Sep 2015
Mahale YJ Aga N

In this retrospective observational cohort study, we describe 17 patients out of 1775 treated for various fractures who developed mycobacterium tuberculosis (MTB) infection after surgery. The cohort comprised 15 men and two women with a mean age of 40 years (24 to 70). A total of ten fractures were open and seven were closed. Of these, seven patients underwent intramedullary nailing of a fracture of the long bone, seven had fractures fixed with plates, two with Kirschner-wires and screws, and one had a hemiarthroplasty of the hip with an Austin Moore prosthesis. All patients were followed-up for two years. In all patients, the infection resolved, and in 14 the fractures united. Nonunion was seen in two patients one of whom underwent two-stage total hip arthroplasty (THA) and the other patient was treated using excision arthoplasty. Another patient was treated using two-stage THA. With only sporadic case reports in the literature, MTB infection is rarely clinically suspected, even in underdeveloped and developing countries, where pulmonary and other forms of TB are endemic. In developed countries there is also an increased incidence among immunocompromised patients. In this paper we discuss the pathogenesis and incidence of MTB infection after surgical management of fractures and suggest protocols for early diagnosis and management.

Cite this article: Bone Joint J 2015;97-B:1279–83.


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 884 - 891
1 Jul 2016
Elliott DS Newman KJH Forward DP Hahn DM Ollivere B Kojima K Handley R Rossiter ND Wixted JJ Smith RM Moran CG

This article presents a unified clinical theory that links established facts about the physiology of bone and homeostasis, with those involved in the healing of fractures and the development of nonunion. The key to this theory is the concept that the tissue that forms in and around a fracture should be considered a specific functional entity. This ‘bone-healing unit’ produces a physiological response to its biological and mechanical environment, which leads to the normal healing of bone. This tissue responds to mechanical forces and functions according to Wolff’s law, Perren’s strain theory and Frost’s concept of the “mechanostat”. In response to the local mechanical environment, the bone-healing unit normally changes with time, producing different tissues that can tolerate various levels of strain. The normal result is the formation of bone that bridges the fracture – healing by callus. Nonunion occurs when the bone-healing unit fails either due to mechanical or biological problems or a combination of both. In clinical practice, the majority of nonunions are due to mechanical problems with instability, resulting in too much strain at the fracture site. In most nonunions, there is an intact bone-healing unit. We suggest that this maintains its biological potential to heal, but fails to function due to the mechanical conditions. The theory predicts the healing pattern of multifragmentary fractures and the observed morphological characteristics of different nonunions. It suggests that the majority of nonunions will heal if the correct mechanical environment is produced by surgery, without the need for biological adjuncts such as autologous bone graft.

Cite this article: Bone Joint J 2016;98-B:884–91.


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 539 - 543
1 Apr 2015
Lawendy A Bihari A Sanders DW McGarr G Badhwar A Cepinskas G

Compartment syndrome, a devastating consequence of limb trauma, is characterised by severe tissue injury and microvascular perfusion deficits. We hypothesised that leucopenia might provide significant protection against microvascular dysfunction and preserve tissue viability. Using our clinically relevant rat model of compartment syndrome, microvascular perfusion and tissue injury were directly visualised by intravital video microscopy in leucopenic animals. We found that while the tissue perfusion was similar in both groups (38.8% (standard error of the mean (sem) 7.1), 36.4% (sem 5.7), 32.0% (sem 1.7), and 30.5% (sem 5.35) continuously-perfused capillaries at 45, 90, 120 and 180 minutes compartment syndrome, respectively versus 39.2% (sem 8.6), 43.5% (sem 8.5), 36.6% (sem 1.4) and 50.8% (sem 4.8) at 45, 90, 120 and 180 minutes compartment syndrome, respectively in leucopenia), compartment syndrome-associated muscle injury was significantly decreased in leucopenic animals (7.0% (sem 2.0), 7.0%, (sem 1.0), 9.0% (sem 1.0) and 5.0% (sem 2.0) at 45, 90, 120 and 180 minutes of compartment syndrome, respectively in leucopenia group versus 18.0% (sem 4.0), 23.0% (sem 4.0), 32.0% (sem 7.0), and 20.0% (sem 5.0) at 45, 90, 120 and 180 minutes of compartment syndrome in control, p = 0.0005). This study demonstrates that the inflammatory process should be considered central to the understanding of the pathogenesis of cellular injury in compartment syndrome.

Cite this article: Bone Joint J 2015;97-B:539–43


The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 259 - 262
1 Feb 2014
Guo KJ Zhao FC Guo Y Li FL Zhu L Zheng W

Corticosteroid use has been implicated in the development of osteonecrosis of the femoral head (ONFH). The exact mechanism and predisposing factors such as age, gender, dosage, type and combination of steroid treatment remain controversial. Between March and July 2003, a total of 539 patients with severe acute respiratory syndrome (SARS) were treated with five different types of steroid. There were 129 men (24%) and 410 women (76%) with a mean age of 33.7 years (21 to 59). Routine screening was undertaken with radiographs, MRI and/or CT to determine the incidence of ONFH.

Of the 129 male patients with SARS, 51 (39.5%) were diagnosed as suffering from ONFH, compared with only 79 of 410 female patients (19.3%). The incidence of ONFH in the patients aged between 20 and 49 years was much higher than that of the group aged between 50 and 59 years (25.9% (127 of 491) versus 6.3% (3 of 48); p = 0.018). The incidence of ONFH in patients receiving one type of steroid was 12.5% (21 of 168), which was much lower than patients receiving two different types (28.6%; 96 of 336) or three different types of steroid (37.1%; 13 of 35).

Cite this article: Bone Joint J 2014;96-B:259–62.