Advertisement for orthosearch.org.uk
Results 1 - 20 of 26
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 6 | Pages 892 - 900
1 Aug 2000
Neale SD Fujikawa Y Sabokbar A Gundle R Murray DW Graves SE Howie DW Athanasou NA

Mononuclear osteoclast precursors are present in the wear-particle-associated macrophage infiltrate found in the membrane surrounding loose implants. These cells are capable of differentiating into osteoclastic bone-resorbing cells when co-cultured with the rat osteoblast-like cell line, UMR 106, in the presence of 1,25(OH). 2. vitamin D. 3. In order to develop an in vitro model of osteoclast differentiation which more closely parallels the cellular microenvironment at the bone-implant interface in situ, we determined whether osteoblast-like human bone-derived cells were capable of supporting the differentiation of osteoclasts from arthroplasty-derived cells and analysed the humoral conditions required for this to occur. Long-term co-culture of arthroplasty-derived cells and human trabecular-bone-derived cells (HBDCs) resulted in the formation of numerous tartrate-resistant-acid-phosphatase (TRAP) and vitronectin-receptor (VNR)-positive multinucleated cells capable of extensive resorption of lacunar bone. The addition of 1,25(OH). 2. vitamin D. 3. was not required for the formation of osteoclasts and bone resorption. During the formation there was release of substantial levels of M-CSF and PGE. 2. Exogenous PGE. 2. (10. −8. to 10. −6. M) was found to stimulate strongly the resorption of osteoclastic bone. Our study has shown that HBDCs are capable of supporting the formation of osteoclasts from mononuclear phagocyte precursors present in the periprosthetic tissues surrounding a loose implant. The release of M-CSF and PGE. 2. by activated cells at the bone-implant interface may be important for the formation of osteoclasts at sites of pathological bone resorption associated with aseptic loosening


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 12 | Pages 1635 - 1640
1 Dec 2008
Spence G Phillips S Campion C Brooks R Rushton N

Carbonate-substituted hydroxyapatite (CHA) is more osteoconductive and more resorbable than hydroxyapatite (HA), but the underlying mode of its action is unclear. We hypothesised that increased resorption of the ceramic by osteoclasts might subsequently upregulate osteoblasts by a coupling mechanism, and sought to test this in a large animal model. Defects were created in both the lateral femoral condyles of 12 adult sheep. Six were implanted with CHA granules bilaterally, and six with HA. Six of the animals in each group received the bisphosphonate zoledronate (0.05 mg/kg), which inhibits the function of osteoclasts, intra-operatively. After six weeks bony ingrowth was greater in the CHA implants than in HA, but not in the animals given zoledronate. Functional osteoclasts are necessary for the enhanced osteoconduction seen in CHA compared with HA


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 849 - 856
1 Sep 1997
Wang W Ferguson DJP Quinn JMW Simpson AHRW Athanasou NA

Abundant implant-derived biomaterial wear particles are generated in aseptic loosening and are deposited in periprosthetic tissues in which they are phagocytosed by mononuclear and multinucleated macrophage-like cells. It has been stated that the multinucleated cells which contain wear particles are not bone-resorbing osteoclasts. To investigate the validity of this claim we isolated human osteoclasts from giant-cell tumours of bone and rat osteoclasts from long bones. These were cultured on glass coverslips and on cortical bone slices in the presence of particles of latex, PMMA and titanium. Osteoclast phagocytosis of these particle types was shown by light microscopy, energy-dispersive X-ray analysis and SEM. Giant cells containing phagocytosed particles were seen to be associated with the formation of resorption lacunae. Osteoclasts containing particles were also calcitonin-receptor-positive and showed an inhibitory response to calcitonin. Our findings demonstrate that osteoclasts are capable of phagocytosing particles of a wide range of size, including particles of polymeric and metallic bio-materials found in periprosthetic tissues, and that after particle phagocytosis, they remain fully functional, hormone-responsive, bone-resorbing cells


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 3 | Pages 452 - 456
1 Apr 2002
Yang TT Sabokbar A Gibbons CLMH Athanasou NA

The cellular mechanisms which account for the formation of osteoclasts and bone resorption associated with enlarging benign and malignant mesenchymal tumours of bone are uncertain. Osteoclasts are marrow-derived, multinucleated, bone-resorbing cells which express a macrophage phenotype. We have determined whether tumour-associated macrophages (TAMs) isolated from benign and malignant mesenchymal tumours are capable of differentiating into osteoclasts. Macrophages were cultured on both coverslips and dentine slices for up to 21 days with UMR 106 osteoblastic cells in the presence of 1,25 dihydroxyvitamin D. 3. (1,25(OH). 2. D. 3. ) and human macrophage colony-stimulating factor (M-CSF) or, in the absence of UMR 106 cells, with M-CSF and RANK ligand. In all tumours, the formation of osteoclasts from CD14-positive macrophages was shown by the formation of tartrate-resistant-acid-phosphatase and vitronectin-receptor-positive multinucleated cells which were capable of carrying out lacunar resorption. These results indicate that the tumour osteolysis associated with the growth of mesenchymal tumours in bone is likely to be due in part to the differentiation of mononuclear phagocyte osteoclast precursors which are present in the TAM population of these lesions


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 3 | Pages 508 - 515
1 May 1999
Yamazaki M Nakajima F Ogasawara A Moriya H Majeska RJ Einhorn TA

The multifunctional adhesion molecule CD44 is a major cell-surface receptor for hyaluronic acid (HUA). Recent data suggest that it may also bind the ubiquitous bone-matrix protein, osteopontin (OPN). Because OPN has been shown to be a potentially important protein in bone remodelling, we investigated the hypothesis that OPN interactions with the CD44 receptor on bone cells participate in the regulation of the healing of fractures. We examined the spatial and temporal patterns of expression of OPN and CD44 in healing fractures of rat femora by in situ hybridisation and immunohistochemistry. We also localised HUA in the fracture callus using biotinylated HUA-binding protein. OPN was expressed in remodelling areas of the hard callus and was found in osteocytes, osteoclasts and osteoprogenitor cells, but not in cuboidal osteoblasts which were otherwise shown to express osteocalcin. The OPN signal in osteocytes was not uniformly distributed, but was restricted to specific regions near sites where OPN mRNA-positive osteoclasts were attached to bone surfaces. In the remodelling callus, intense immunostaining for CD44 was detected in osteocyte lacunae, along canaliculi, and on the basolateral plasma membrane of osteoclasts, but not in the cuboidal osteoblasts. HUA staining was detected in fibrous tissues but little was observed in areas of hard callus where bone remodelling was progressing. Our findings suggest that OPN, rather than HUA, is the major ligand for CD44 on bone cells in the remodelling phase of healing of fractures. They also raise the possibility that such interactions may be involved in the communication of osteocytes with each other and with osteoclasts on bone surfaces. The interactions between CD44 and OPN may have important clinical implications in the repair of skeletal tissues


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 6 | Pages 902 - 911
1 Aug 2001
Haynes DR Crotti TN Potter AE Loric M Atkins GJ Howie DW Findlay DM

Extensive osteolysis adjacent to implants is often associated with wear particles of prosthetic material. We have investigated if RANKL, also known as osteoprotegerin ligand, osteoclast differentiation factor or TRANCE, and its natural inhibitor, osteoprotegerin (OPG), may be important in controlling this bone loss. Cells isolated from periprosthetic tissues containing wear particles expressed mRNA encoding for the pro-osteoclastogenic molecules, RANKL, its receptor RANK, monocyte colony-stimulating factor (M-CSF), interleukin (IL)-1β, tumour necrosis factor (TNF)α, IL-6, and soluble IL-6 receptor, as well as OPG. Osteoclasts formed from cells isolated from periprosthetic tissues in the presence and absence of human osteoblastic cells. When osteoclasts formed in the absence of osteoblastic cells, markedly higher levels of RANKL mRNA relative to OPG mRNA were expressed. Particles of prosthetic materials also stimulated human monocytes to express osteoclastogenic molecules in vitro. Our results suggest that ingestion of prosthetic wear particles by macrophages results in expression of osteoclast-differentiating molecules and the stimulation of macrophage differentiation into osteoclasts


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 6 | Pages 1024 - 1030
1 Nov 1997
Pazzaglia UE Andrini L Di Nucci A

We have used an experimental model employing the bent tail of rats to investigate the effects of mechanical forces on bones and joints. Mechanical strain could be applied to the bones and joints of the tail without direct surgical exposure or the application of pins and wires. The intervertebral disc showed stretched annular lamellae on the convex side, while the annulus fibrosus on the concave side was pinched between the inner corners of the vertebral epiphysis. In young rats with an active growth plate, a transverse fissure appeared at the level of the hypertrophic cell layer or the primary metaphyseal trabecular zone. Metaphyseal and epiphyseal trabeculae on the compressed side were thicker and more dense than those of the distracted part of the vertebra. In growing animals, morphometric analysis of hemiepiphyseal and hemimetaphyseal areas, and the corresponding trabecular bone density, showed significant differences between the compressed and distracted sides. No differences were observed in adult rats. We found no significant differences in osteoclast number between compressed and distracted sides in either age group. Our results provide quantitative evidence of the working of ‘Wolff’s law’. The differences in trabecular density are examples of remodelling by osteoclasts and osteoblasts; our finding of no significant difference in osteoclast numbers between the hemiepiphyses in the experimental and control groups suggests that the response of living bone to altered strain is mediated by osteoblasts


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 8 | Pages 1196 - 1201
1 Nov 2003
Mandelin J Li T Liljeström M Kroon ME Hanemaaijer R Santavirta S Konttinen YT

In the differentiation of osteoclasts the differentiation factor (RANKL) interacts with the receptor activator of NF-κB (RANK) in a direct cell-to-cell contact between osteoblast and (pre)osteoclast. This is inhibited by soluble osteoprotegerin (OPG). The mRNA levels of both RANKL (p < 0.01) and RANK (p < 0.05) were high in peri-implant tissue and RANKL+ and RANK+ cells were found in such tissue. Double labelling also disclosed soluble RANKL bound to RANK+ cells. We were unable to stimulate fibroblasts to express RANKL in vitro, but monocyte activation with LPS gave a fivefold increase in RANK mRNA levels. In contrast to RANKL and RANK expression in peri-implant tissue, expression of OPG was restricted to vascular endothelium. Endothelial cell OPG mRNA levels were regulated by TNF-α and VEGF, but not by hypoxia. It is concluded that activated cells in the interface tissue overproduce both RANKL and RANK and they can interact without interference by OPG


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 5 | Pages 755 - 759
1 Jul 2000
Ferrier GM McEvoy A Evans CE Andrew JG

Aseptic loosening and osteolysis around prosthetic joints are the principal causes of failure and consequent revision. During this process activated macrophages produce cytokines which are thought to promote osteolysis by osteoclasts. Changes in pressure within the space around implants have been proposed as a cause of loosening and osteolysis. We therefore studied the effect of two different regimes of cyclic pressure on the production of interleukin-1β (IL-1β), IL-6 and tumour necrosis factor-α (TNF-α) by cultured human monocyte-derived (M-D) macrophages. There was a wide variation in the expression of cytokines in non-stimulated M-D macrophages from different donors and therefore cells from the same donor were compared under control and pressurised conditions. Both regimes of cyclic pressure were found to increase expression of IL-6 and TNF-α. Expression of IL-1β was increased by a higher-frequency regime only. Our findings suggest that M-D macrophages are activated by cyclic pressure. Further work will be required to understand the relative roles of frequency, amplitude and duration of applied pressure in the cellular effects of cyclic pressure in this system


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 1 | Pages 129 - 134
1 Jan 1997
Sabokbar A Fujikawa Y Murray DW Athanasou NA

A heavy infiltrate of foreign-body macrophages is commonly seen in the fibrous membrane which surrounds an aseptically loose cemented implant. This is in response to particles of polymethylmethacrylate (PMMA) bone cement and other biomaterials. We have previously shown that monocytes and macrophages responding to particles of bone cement are capable of differentiating into osteoclastic cells which resorb bone. To determine whether the radio-opaque additives barium sulphate (BaSO. 4. ) and zirconium dioxide (ZrO. 2. ) influence this process, particles of PMMA with and without these agents were added to mouse monocytes and cocultured with osteoblast-like cells on bone slices. Osteoclast differentiation, as shown by the presence of the osteoclast-associated enzyme tartrate-resistant acid phosphatase (TRAP) and lacunar bone resorption, was observed in all cocultures. The addition of PMMA alone to these cocultures caused no increase in TRAP expression or bone resorption relative to control cocultures. Adding PMMA particles containing BaSO. 4. or ZrO. 2. , however, caused an increase in TRAP expression and a highly significant increase in bone resorption. Particles containing BaSO. 4. were associated with 50% more bone resorption than those containing ZrO. 2. . Our results suggest that radio-opaque agents in bone cement may contribute to the bone resorption of aseptic loosening by enhancing macrophage-osteoclast differentiation, and that PMMA containing is BaSO. 4. likely to be associated with more osteolysis than that containing ZrO. 2.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 2 | Pages 283 - 289
1 Mar 2000
Heinemann DEH Lohmann C Siggelkow H Alves F Engel I Köster G

Periprosthetic osteolysis is a major cause of aseptic loosening in artificial joint replacement. It is assumed to occur in conjunction with the activation of macrophages. We have shown in vitro that human osteoblast-like cells, isolated from bone specimens obtained from patients undergoing hip replacement, phagocytose fine particles of titanium alloy (TiAlV). The human osteoblast-like cells were identified immunocytochemically by the presence of bone-specific alkaline phosphatase (BAP). With increasing duration of culture, a variable number of the osteoblastic cells became positive for the macrophage marker CD68, independent of the phagocytosis of particles, with a fine granular cytoplasmic staining which was coexpressed with BAP as revealed by immunodoublestaining. The metal particles were not toxic to the osteoblastic cells since even in culture for up to four weeks massively laden cells were vital and had a characteristic morphology. Cells of the human osteosarcoma cell line (HOS 58) were also able to phagocytose metal particles but had only a low expression of the CD68 antigen. Fluorescence-activated cell scanning confirmed our immunocytochemical results. Additionally, the cells were found to be negative for the major histocompatibility complex-II (MHC-II) which is a marker for macrophages and other antigen-presenting cells. Negative results of histochemical tests for tartrate-resistant acid phosphatase excluded the contamination by osteoclasts or macrophages in culture. Our observations suggest that the osteoblast can either change to a phagocytosing cell or that the phagocytosis is an underestimated property of the osteoblast. The detection of the CD68 antigen is insufficient to prove the monocytic lineage. In order to discriminate between macrophages and osteoblasts additional markers should be used. To our knowledge, this is the first demonstration of cells of an osteoblastic origin which have acquired a mixed phenotype of both osteoblasts and macrophages


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 558 - 565
1 Apr 2011
Xie X Wang X Zhang G Liu Z Yao D Hung L Hung VW Qin L

Corticosteroids are prescribed for the treatment of many medical conditions and their adverse effects on bone, including steroid-associated osteoporosis and osteonecrosis, are well documented. Core decompression is performed to treat osteonecrosis, but the results are variable. As steroids may affect bone turnover, this study was designed to investigate bone healing within a bone tunnel after core decompression in an experimental model of steroid-associated osteonecrosis. A total of five 28-week-old New Zealand rabbits were used to establish a model of steroid-induced osteonecrosis and another five rabbits served as controls. Two weeks after the induction of osteonecrosis, core decompression was performed by creating a bone tunnel 3 mm in diameter in both distal femora of each rabbit in both the experimental osteonecrosis and control groups. An in vivo micro-CT scanner was used to monitor healing within the bone tunnel at four, eight and 12 weeks postoperatively. At week 12, the animals were killed for histological and biomechanical analysis.

In the osteonecrosis group all measurements of bone healing and maturation were lower compared with the control group. Impaired osteogenesis and remodelling within the bone tunnel was demonstrated in the steroid-induced osteonecrosis, accompanied by inferior mechanical properties of the bone.

We have confirmed impaired bone healing in a model of bone defects in rabbits with pulsed administration of corticosteroids. This finding may be important in the development of strategies for treatment to improve the prognosis of fracture healing or the repair of bone defects in patients receiving steroid treatment.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 9 | Pages 1253 - 1260
1 Sep 2007
Karachalios T Boursinos L Poultsides L Khaldi L Malizos KN

We have evaluated the effect of the short-term administration of low therapeutic doses of modern COX-2 inhibitors on the healing of fractures.

A total of 40 adult male New Zealand rabbits were divided into five groups. A mid-diaphyseal osteotomy of the right ulna was performed and either normal saline, prednisolone, indometacin, meloxicam or rofecoxib was administered for five days. Radiological, biomechanical and histomorphometric evaluation was performed at six weeks.

In the group in which the highly selective anti-COX-2 agent, rofecoxib, was used the incidence of radiologically-incomplete union was similar to that in the control group. All the biomechanical parameters were statistically significantly lower in both the prednisolone and indometacin (p = 0.01) and in the meloxicam (p = 0.04) groups compared with the control group. Only the fracture load values were found to be statistically significantly lower (p = 0.05) in the rofecoxib group. Histomorphometric parameters were adversely affected in all groups with the specimens of the rofecoxib group showing the least negative effect.

Our findings indicated that the short-term administration of low therapeutic doses of a highly selective COX-2 inhibitor had a minor negative effect on bone healing.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 3 | Pages 400 - 404
1 Mar 2008
Johansson HR Skripitz R Aspenberg P

We have examined the deterioration of implant fixation after withdrawal of parathyroid hormone (PTH) in rats. First, the pull-out force for stainless-steel screws in the proximal tibia was measured at different times after withdrawal. The stimulatory effect of PTH on fixation was lost after 16 days. We then studied whether bisphosphonates could block this withdrawal effect. Mechanical and histomorphometric measurements were conducted for five weeks after implantation. Subcutaneous injections were given daily. Specimens treated with either PTH or saline during the first two weeks showed no difference in the mechanical or histological results (pull-out force 76 N vs 81 N; bone volume density 19% vs 20%). Treatment with PTH for two weeks followed by pamidronate almost doubled the pull-out force (152 N; p < 0.001) and the bone volume density (37%; ANOVA, p < 0.001). Pamidronate alone did not have this effect (89 N and 25%, respectively). Thus, the deterioration can be blocked by bisphosphonates. The clinical implications are discussed.


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1575 - 1580
1 Nov 2013
Salai M Somjen D Gigi R Yakobson O Katzburg S Dolkart O

We analysed the effects of commonly used medications on human osteoblastic cell activity in vitro, specifically proliferation and tissue mineralisation. A list of medications was retrieved from the records of patients aged > 65 years filed in the database of the largest health maintenance organisation in our country (> two million members). Proliferation and mineralisation assays were performed on the following drugs: rosuvastatin (statin), metformin (antidiabetic), metoprolol (β-blocker), citalopram (selective serotonin reuptake inhibitor [SSRI]), and omeprazole (proton pump inhibitor (PPI)). All tested drugs significantly stimulated DNA synthesis to varying degrees, with rosuvastatin 5 µg/ml being the most effective among them (mean 225% (sd 20)), compared with metformin 10 µg/ml (185% (sd 10)), metoprolol 0.25 µg/ml (190% (sd 20)), citalopram 0.05 µg/ml (150% (sd 10)) and omeprazole 0.001 µg/ml (145% (sd 5)). Metformin and metoprolol (to a small extent) and rosuvastatin (to a much higher extent) inhibited cell mineralisation (85% (sd 5)). Our results indicate the need to evaluate the medications prescribed to patients in terms of their potential action on osteoblasts. Appropriate evaluation and prophylactic treatment (when necessary) might lower the incidence and costs associated with potential medication-induced osteoporosis.

Cite this article: Bone Joint J 2013;95-B:1575–80.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 984 - 988
1 Jul 2007
Omi H Kusumi T Kijima H Toh S

We investigated the effect of locally administered bisphosphonate on distraction osteogenesis in a rabbit model and evaluated its systemic effect. An osteotomy on the right tibia followed by distraction for four weeks was performed on 47 immature rabbits. They were divided into seven equal groups, with each group receiving a different treatment regime. Saline and three types of dosage of alendronate (low, 0.75 μg/kg; mid, 7.5 μg/kg and high 75 μg/kg) were given by systemic injection in four groups, and saline and two dosages (low and mild) were delivered by local injection to the distraction gap in the remaining three groups. The injections were performed five times weekly during the period of distraction.

After nine weeks the animals were killed and image analysis and mechanical testing were performed on the distracted right tibiae and the left tibiae which served as a control group. The local low-dose alendronate group showed a mean increase in bone mineral density of 124.3 mg/cm3 over the local saline group (analysis of variance, p < 0.05) without any adverse effect on the left control tibiae.

The findings indicate that the administration of local low-dose alendronate could be an effective pharmacological means of improving bone formation in distraction osteogenesis.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 670 - 675
1 May 2009
Agholme F Aspenberg P

Soaking bone grafts in a bisphosphonate solution before implantation can prevent their resorption and increase the local bone density in rats and humans. However, recent studies suggest that pre-treatment of allografts with bisphosphonate can prevent bone ingrowth into impaction grafts. We tested the hypothesis that excessive amounts of bisphosphonate would also cause a negative response in less dense grafts. We used a model where non-impacted metaphyseal bone grafts were randomised into three groups with either no bisphosphonate, alendronate followed by rinsing, and alendronate without subsequent rinsing, and inserted into bone chambers in rats. The specimens were evaluated histologically at one week, and by histomorphometry and radiology at four weeks. At four weeks, both bisphosphonate groups showed an increase in the total bone content, increased newly formed bone, and higher radiodensity than the controls. In spite of being implanted in a chamber with a limited opportunity to diffuse, even an excessive amount of bisphosphonate improved the outcome. We suggest that the negative results seen by others could be due to the combination of densely compacted bone and a bisphosphonate.

We suggest that bisphosphonates are likely to have a negative influence where resorption is a prerequisite to create space for new bone ingrowth.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1433 - 1438
1 Oct 2012
Lam W Guo X Leung K Kwong KSC

This study was designed to test the hypothesis that the sensory innervation of bone might play an important role in sensing and responding to low-intensity pulsed ultrasound and explain its effect in promoting fracture healing. In 112 rats a standardised mid-shaft tibial fracture was created, supported with an intramedullary needle and divided into four groups of 28. These either had a sciatic neurectomy or a patellar tendon resection as control, and received the ultrasound or not as a sham treatment. Fracture union, callus mineralisation and remodelling were assessed using plain radiography, peripheral quantitative computed tomography and histomorphology.

Daily ultrasound treatment significantly increased the rate of union and the volumetric bone mineral density in the fracture callus in the neurally intact rats (p = 0.025), but this stimulating effect was absent in the rats with sciatic neurectomy. Histomorphology demonstrated faster maturation of the callus in the group treated with ultrasound when compared with the control group. The results supported the hypothesis that intact innervation plays an important role in allowing low-intensity pulsed ultrasound to promote fracture healing.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 4 | Pages 535 - 541
1 Apr 2008
Pendegrass CJ Sundar S Oddy MJ Cannon SR Briggs T Blunn GW

We used an in vivo model to assess the use of an autogenous cancellous bone block and marrow graft for augmenting tendon reattachment to metallic implants. We hypothesised that augmentation of the tendon-implant interface with a bone block would enable retention of the graft on the implant surface, enhance biological integration, and result in more consistent functional outcomes compared with previously reported morcellised graft augmentation techniques.

A significant improvement in functional weight-bearing was observed between six and 12 weeks. The significant increase in ground reaction force through the operated limb between six and 12 weeks was greater than that reported previously with morcellised graft augmented reconstructions. Histological appearance and collagen fibre orientation with bone block augmentation more closely resembled that of an intact enthesis compared with the morcellised grafting technique. Bone block augmentation of tendon-implant interfaces results in more reliable functional and histological outcomes, with a return to pre-operative levels of weight-bearing by 24 weeks.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1097 - 1101
1 Aug 2006
Jambhekar NA Kulkarni SP Madur BP Agarwal S Rajan MGR

A retrospective series of 45 cases of chronic osteomyelitis collected over a period of 14 years was histologically classified into tuberculous osteomyelitis (25) and chronic non-granulomatous osteomyelitis (20). The tuberculous osteomyelitis group was divided into three subgroups: a) typical granulomas (13 cases); b) ill-defined granulomas (seven cases), and c) suspected granulomas (five cases). An in-house polymerase chain reaction amplifying the 245 bp nucleotide sequence, and capable of detecting 10 fg of DNA of Mycobacterium tuberculosis, was used on the DNA extracted from the paraffin blocks. The polymerase chain reaction was positive in 72% of cases (18) of tuberculous osteomyelitis, but when typical cases of tuberculous osteomyelitis with confirmed granulomas were considered (13), this increased to 84.6% (11). The chronic non-granulomatous osteomyelitis group gave positive polymerase chain reaction results in 20% of the cases (4).

Our preliminary study on tuberculous osteomyelitis shows that the polymerase chain reaction can be a very useful diagnostic tool, since a good correlation was seen between typical granulomas and polymerase chain reaction with a sensitivity of 84.6% and a specificity of 80%. In addition, our study shows that tuberculous osteomyelitis can be diagnosed in formalin-fixed paraffin-embedded tissues in the absence of typical granulomas.