We describe the outcome at a mean follow-up of 8.75 years (7.6 to 9.8) of seven patients who had undergone
We performed eight
Osteochondral lesions (OCLs) occur in up to 70%
of sprains and fractures involving the ankle. Atraumatic aetiologies have
also been described. Techniques such as microfracture, and replacement
strategies such as
The management of symptomatic osteochondral lesions of the talus (OLTs) can be challenging. The number of ways of treating these lesions has increased considerably during the last decade, with published studies often providing conflicting, low-level evidence. This paper aims to present an up-to-date concise overview of the best evidence for the surgical treatment of OLTs. Management options are reviewed based on the size of the lesion and include bone marrow stimulation, bone grafting options, drilling techniques, biological preparations, and resurfacing. Although many of these techniques have shown promising results, there remains little high level evidence, and further large scale prospective studies and systematic reviews will be required to identify the optimal form of treatment for these lesions. Cite this article:
Osteochondritis Dissecans (OCD) is a condition
for which the aetiology remains unknown. It affects subchondral bone
and secondarily its overlying cartilage and is mostly found in the
knee. It can occur in adults, but is generally identified when growth
remains, when it is referred to as juvenile OCD. As the condition
progresses, the affected subchondral bone separates from adjacent
healthy bone, and can lead to demarcation and separation of its associated
articular cartilage. Any symptoms which arise relate to the stage
of the disease. Early disease without separation of the lesion results
in pain. Separation of the lesion leads to mechanical symptoms and
swelling and, in advanced cases, the formation of loose bodies. Early identification of OCD is essential as untreated OCD can
lead to the premature degeneration of the joint, whereas appropriate
treatment can halt the disease process and lead to healing. Establishing
the stability of the lesion is a key part of providing the correct
treatment. Stable lesions, particularly in juvenile patients, have
greater propensity to heal with non-surgical treatment, whereas
unstable or displaced lesions usually require surgical management. This article discusses the aetiology, clinical presentation and
prognosis of OCD in the knee. It presents an algorithm for treatment,
which aims to promote healing of native hyaline cartilage and to
ensure joint congruity. Take home message: Although there is no clear consensus as to
the best treatment of OCD, every attempt should be made to retain
the osteochondral fragment when possible as, with a careful surgical
technique, there is potential for healing even in chronic lesions Cite this article:
Perilesional changes of chronic focal osteochondral defects were assessed in the knees of 23 sheep. An osteochondral defect was created in the main load-bearing region of the medial condyle of the knees in a controlled, standardised manner. The perilesional cartilage was evaluated macroscopically and biopsies were taken at the time of production of the defect (T0), during a second operation one month later (T1), and after killing animals at three (T3; n = 8), four (T4; n = 8), and seven (T7; n = 8) months. All the samples were histologically assessed by the International Cartilage Repair Society grading system and Mankin histological scores. Biopsies were taken from human patients (n = 10) with chronic articular cartilage lesions and compared with the ovine specimens. The ovine perilesional cartilage presented with macroscopic and histological signs of degeneration. At T1 the International Cartilage Repair Society ‘Subchondral Bone’ score decreased from a mean of 3.0 ( The perilesional cartilage in the animal model became chronic at one month and its histological appearance may be considered comparable with that seen in human osteochondral defects after trauma.
Surgical reconstruction of articular surfaces by transplantation of osteochondral autografts has shown considerable promise in the treatment of focal articular lesions. During mosaicplasty, each cylindrical osteochondral graft is centred over the recipient hole and delivered by impacting the articular surface. Impact loading of articular cartilage has been associated with structural damage, loss of the viability of chondrocytes and subsequent degeneration of the articular cartilage. We have examined the relationship between single-impact loading and chondrocyte death for the specific confined-compression boundary conditions of mosaicplasty and the effect of repetitive impact loading which occurs during implantation of the graft on the resulting viability of the chondrocytes. Fresh bovine and porcine femoral condyles were used in this experiment. The percentage of chondrocyte death was found to vary logarithmically with single-impact energy and was predicted more strongly by the mean force of the impact rather than by the number of impacts required during placement of the graft. The significance of these results in regard to the surgical technique and design features of instruments for osteochondral transplantation is discussed.