The aim of this study was to compare the maximum
laxity conferred by the cruciate-retaining (CR) and posterior-stabilised
(PS) Triathlon single-radius total knee arthroplasty (TKA) for anterior
drawer, varus–valgus opening and rotation in eight cadaver knees
through a defined arc of flexion (0º to 110º). The null hypothesis
was that the limits of laxity of CR- and PS-TKAs are not significantly
different. The investigation was undertaken in eight loaded cadaver knees
undergoing subjective stress testing using a measurement rig. Firstly
the native knee was tested prior to preparation for CR-TKA and subsequently
for PS-TKA implantation. Surgical
Aims. A significant percentage of patients remain dissatisfied after total knee arthroplasty (TKA). The aim of this study was to determine whether the sequential addition of accelerometer-based
The object of this study was to develop a method to assess the accuracy of an image-free total knee replacement
Bilateral sequential total knee replacement was carried out under one anaesthetic in 100 patients. One knee was replaced using a CT-free computer-assisted
We compared the alignment of 39 total knee replacements implanted using the conventional alignment guide system with 37 implanted using a CT-based
We conducted this prospective randomised and externally evaluated study to investigate whether the use of a
We previously compared the component alignment in total knee replacement using a computer-navigated technique with a conventional jig-based method. We randomly allocated 71 patients to undergo either computer-navigated or conventional replacement. An improved alignment was seen in the computer-navigated group. The patients were then followed up post-operatively for two years, using the Knee Society score, the Short Form-36 health survey, the Western Ontario and McMaster Universities osteoarthritis index, the Bartlett Patellar pain questionnaire and the Oxford knee score, to assess functional outcome. At two years post-operatively 60 patients were available for assessment, 30 in each group and 62 patients completed a postal survey. No patient in either group had undergone revision. All variables were analysed for differences between the groups either by Student’s The clinical outcome of the patients with a computer-navigated knee replacement appears to be no different to that of a more conventional jig-based technique at two years post-operatively, despite the better alignment achieved with computer-navigated surgery.
Aims. Neither a surgeon’s intraoperative impression nor the parameters of computer
We assessed the reliability, accuracy and variability of closed-wedge high tibial osteotomy (HTO) using computer-assisted surgery compared to the conventional technique. A total of 50 closed-wedge HTO procedures were performed using the
Aims. The aims of this study were to determine the effect of osteophyte excision on deformity correction and soft tissue gap balance in varus knees undergoing computer-assisted total knee arthroplasty (TKA). Methods. A total of 492 consecutive, cemented, cruciate-substituting TKAs performed for varus osteoarthritis were studied. After exposure and excision of both cruciates and menisci, it was noted from operative records the corrective interventions performed in each case. Knees in which no releases after the initial exposure, those which had only osteophyte excision, and those in which further interventions were performed were identified. From recorded
Aims. The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Methods. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output. Results. The results revealed that the US bone models were accurate compared with the CT models (root mean squared error (RM)S: femur, 1.07 mm (SD 0.15); tibia, 1.02 mm (SD 0.13). Additionally, femoral landmarking proved to be accurate (transepicondylar axis: 1.07° (SD 0.65°); posterior condylar axis: 0.73° (SD 0.41°); distal condylar axis: 0.96° (SD 0.89°); medial anteroposterior (AP): 1.22 mm (SD 0.69); lateral AP: 1.21 mm (SD 1.02)). Tibial landmarking errors were slightly higher (posterior slope axis: 1.92° (SD 1.31°); and tubercle axis: 1.91° (SD 1.24°)). For implant sizing, 90% of the femora and 60% of the tibiae were sized correctly, while the remainder were only one size different from the required implant size. No difference was observed between moderate and skilled users. Conclusion. The 3D US bone models were proven to be closely matched compared with CT and suitable for preoperative planning. The 3D US is radiation-free and offers numerous clinical opportunities for bone visualization rapidly during clinic visits, to enable preoperative planning with implant sizing. There is potential to extend its application to 3D dynamic ligament balancing, and intraoperative registration for use with robots and
The aim of this prospective single-centre study
was to assess the difference in clinical outcome between total knee replacement
(TKR) using computerised
There are several methods for evaluating stability
of the joint during total knee replacement (TKR). Activities of daily
living demand mechanical loading to the knee joint, not only in
full extension, but also in mid-flexion. The purpose of this study
was to compare the varus-valgus stability throughout flexion in
knees treated with either cruciate-retaining or posterior-stabilised
TKR, using an intra-operative
The requirement for release of collateral ligaments to achieve a stable, balanced total knee replacement has been reported to arise in about 50% to 100% of procedures. This wide range reflects a lack of standardised quantitative indicators to determine the necessity for a release. Using recent advances in computerised
Total knee arthroplasty (TKA) with a highly congruent condylar-stabilized (CS) articulation may be advantageous due to increased stability versus cruciate-retaining (CR) designs, while mitigating the limitations of a posterior-stabilized construct. The aim was to assess ten-year implant survival and functional outcomes of a cemented single-radius TKA with a CS insert, performed without posterior cruciate ligament sacrifice. This retrospective cohort study included consecutive patients undergoing TKA at a specialist centre in the UK between November 2010 and December 2012. Data were collected using a bespoke electronic database and cross-referenced with national arthroplasty audit data, with variables including: preoperative characteristics, intraoperative factors, complications, and mortality status. Patient-reported outcome measures (PROMs) were collected by a specialist research team at ten years post-surgery. There were 536 TKAs, of which 308/536 (57.5%) were in female patients. The mean age was 69.0 years (95% CI 45.0 to 88.0), the mean BMI was 32.2 kg/m2 (95% CI 18.9 to 50.2), and 387/536 (72.2%) survived to ten years. There were four revisions (0.7%): two deep infections (requiring debridement and implant retention), one aseptic loosening, and one haemosiderosis.Aims
Methods
Minimally invasive total knee replacement (MIS-TKR)
has been reported to have better early recovery than conventional
TKR. Quadriceps-sparing (QS) TKR is the least invasive MIS procedure,
but it is technically demanding with higher reported rates of complications
and outliers. This study was designed to compare the early clinical
and radiological outcomes of TKR performed by an experienced surgeon
using the QS approach with or without
The Coronal Plane Alignment of the Knee (CPAK) classification has been developed to predict individual variations in inherent knee alignment. The impact of preoperative and postoperative CPAK classification phenotype on the postoperative clinical outcomes of total knee arthroplasty (TKA) remains elusive. This study aimed to examine the effect of postoperative CPAK classification phenotypes (I to IX), and their pre- to postoperative changes on patient-reported outcome measures (PROMs). A questionnaire was administered to 340 patients (422 knees) who underwent primary TKA for osteoarthritis (OA) between September 2013 and June 2019. A total of 231 patients (284 knees) responded. The Knee Society Score 2011 (KSS 2011), Knee injury and Osteoarthritis Outcome Score-12 (KOOS-12), and Forgotten Joint Score-12 (FJS-12) were used to assess clinical outcomes. Using preoperative and postoperative anteroposterior full-leg radiographs, the arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) were calculated and classified based on the CPAK classification. To investigate the impact on PROMs, multivariable regression analyses using stepwise selection were conducted, considering factors such as age at surgery, time since surgery, BMI, sex, implant use, postoperative aHKA classification, JLO classification, and changes in aHKA and JLO classifications from preoperative to postoperative.Aims
Methods
Aims. The aim of this study was to evaluate the effects of using a
portable, accelerometer-based surgical
The aim of this study was to investigate the distribution of phenotypes in Asian patients with end-stage osteoarthritis (OA) and assess whether the phenotype affected the clinical outcome and survival of mechanically aligned total knee arthroplasty (TKA). We also compared the survival of the group in which the phenotype unintentionally remained unchanged with those in which it was corrected to neutral. The study involved 945 TKAs, which were performed in 641 patients with primary OA, between January 2000 and January 2009. These were classified into 12 phenotypes based on the combined assessment of four categories of the arithmetic hip-knee-ankle angle and three categories of actual joint line obliquity. The rates of survival were analyzed using Kaplan-Meier methods and the log-rank test. The Hospital for Special Surgery score and survival of each phenotype were compared with those of the reference phenotype with neutral alignment and a parallel joint line. We also compared long-term survival between the unchanged phenotype group and the corrected to neutral alignment-parallel joint line group in patients with Type IV-b (mild to moderate varus alignment-parallel joint line) phenotype.Aims
Methods