Aims. The primary objective of this study was to develop a validated classification system for assessing iatrogenic bone trauma and soft-tissue injury during total hip arthroplasty (THA). The secondary objective was to compare macroscopic bone trauma and soft-tissues injury in conventional THA (CO THA) versus robotic arm-assisted THA (RO THA) using this classification system. Methods. This study included 30 CO THAs versus 30 RO THAs performed by a single surgeon. Intraoperative photographs of the osseous acetabulum and periacetabular soft-tissues were obtained prior to implantation of the acetabular component, which were used to develop the proposed classification system. Interobserver and intraobserver variabilities of the proposed classification system were assessed. Results. The BOne trauma and Soft-Tissue Injury classification system in total Hip arthroplasty (BOSTI Hip) grades osseous acetabular trauma and periarticular muscle damage during THA. The classification system has an interclass correlation coefficient of 0.90 (95% CI 0.86 to 0.93) for interobserver agreement and 0.89 (95% CI 0.84 to 0.93) for intraobserver agreement. RO THA was associated with improved BOSTI Hip scores (p = 0.002) and more pristine osseous surfaces in the anterior superior (p = 0.001) and posterior superior (p < 0.001) acetabular quadrants compared with CO THA. There were no differences between the groups in relation to injury to the gluteus medius (p = 0.084), obturator internus (p = 0.241), piriformis (p = 0.081), superior gamellus (p = 0.116), inferior gamellus (p = 0.132), quadratus femoris (p = 0.208), and vastus lateralis (p = 0.135), but overall combined
Hip and groin injuries are common in athletes
who take part in high level sports. Adductor