Periprosthetic joint infection (PJI) is one of the most dreaded complications after arthroplasty surgery; thus numerous approaches have been undertaken to equip metal surfaces with antibacterial properties. Due to its antimicrobial effects, silver is a promising coating for metallic surfaces, and several types of silver-coated arthroplasty implants are in clinical use today. However, silver can also exert toxic effects on eukaryotic cells both in the immediate vicinity of the coated implants and systemically. In most clinically-used implants, silver coatings are applied on bulk components that are not in direct contact with bone, such as in partial or total long bone arthroplasties used in tumour or complex revision surgery. These implants differ considerably in the coating method, total silver content, and silver release rates. Safety issues, such as the occurrence of argyria, have been a cause for concern, and the efficacy of silver coatings in terms of preventing PJI is also controversial. The application of silver coatings is uncommon on parts of implants intended for cementless fixation in host bone, but this option might be highly desirable since the modification of implant surfaces in order to improve osteoconductivity can also increase bacterial adhesion. Therefore, an optimal silver content that inhibits bacterial colonization while maintaining osteoconductivity is crucial if silver were to be applied as a coating on parts intended for bone contact. This review summarizes the different methods used to apply silver coatings to arthroplasty components, with a focus on the amount and duration of silver release from the different coatings; the available experience with silver-coated implants that are in clinical use today; and future strategies to balance the effects of silver on bacteria and eukaryotic cells, and to develop silver-coated titanium components suitable for bone ingrowth. Cite this article:
Coccydynia is a painful disorder characterised by coccygeal pain which is typically exaggerated by pressure. It remains an unsolved mystery because of the perceived unpredictability of the origin of the pain, some psychological traits that may be associated with the disorder, the presence of diverse treatment options, and varied outcomes. A more detailed classification based on the aetiology and pathoanatomy of coccydynia helps to identify patients who may benefit from conservative and surgical management. This review focuses on the pathoanatomy, aetiology, clinical features, radiology, treatment and outcome of coccydynia.
Many radiographic techniques have been described for measuring patellar height. They can be divided into two groups: those that relate the position of the patella to the femur (direct) and those that relate it to the tibia (indirect). This article looks at the methods that have been described, the logic behind their conception and the critical analyses that have been performed to test them.
We have reviewed the literature to establish the role of lateral retinacular release in the management of disorders of the extensor apparatus of the knee. The scientific evidence for intervention is explored and reports on outcome are discussed.
The mammalian growth plate is a complex structure which is essential for the elongation of long bones. However, an understanding of how the growth plate functions at the cellular level is lacking. This review, summarises the factors involved in growth-plate regulation, its failure and the consequence of injury. We also describe some of the cellular mechanisms which underpin the increase in volume of the growth-plate chondrocyte which is the major determinant of the rate and extent of bone lengthening. We show how living in situ chondrocytes can be imaged using 2-photon laser scanning microscopy to provide a quantitative analysis of their volume. This approach should give better understanding of the cellular control of bone growth in both healthy and failed growth plates.
The pathophysiology of intervertebral disc degeneration has been extensively studied. Various factors have been suggested as influencing its aetiology, including mechanical factors, such as compressive loading, shear stress and vibration, as well as ageing, genetic, systemic and toxic factors, which can lead to degeneration of the disc through biochemical reactions. How are these factors linked? What is their individual importance? There is no clear evidence indicating whether ageing in the presence of repetitive injury or repetitive injury in the absence of ageing plays a greater role in the degenerative process. Mechanical factors can trigger biochemical reactions which, in turn, may promote the normal biological changes of ageing, which can also be accelerated by genetic factors. Degradation of the molecular structure of the disc during ageing renders it more susceptible to superimposed mechanical injuries. This review supports the theory that degeneration of the disc has a complex multifactorial aetiology. Which factors initiate the events in the degenerative cascade is a question that remains unanswered, but most evidence points to an age-related process influenced primarily by mechanical and genetic factors.
Chronic patellofemoral instability can be a disabling condition. Management of patients with this condition has improved owing to our increased knowledge of the functional anatomy of the patellofemoral joint. Accurate assessment of the underlying pathology in the unstable joint enables the formulation of appropriate treatment. The surgical technique employed in patients for whom non-operative management has failed should address the diagnosed abnormality. We have reviewed the literature on the stabilising features of the patellofemoral joint, the recommended investigations and the appropriate forms of treatment.
Talipes equinovarus is one of the more common congenital abnormalities affecting the lower limb and can be challenging to manage. This review provides a comprehensive update on idiopathic congenital talipes equinovarus with emphasis on the initial treatment. Current management is moving away from operative towards a more conservative treatment using the Ponseti regime. The long-term results of surgical correction and the recent results of conservative treatment will be discussed.
A review of the current literature shows that there is a lack of consensus regarding the treatment of spondylolysis and spondylolisthesis in children and adolescents. Most of the views and recommendations provided in various reports are weakly supported by evidence. There is a limited amount of information about the natural history of the condition, making it difficult to compare the effectiveness of various conservative and operative treatments. This systematic review summarises the current knowledge on spondylolysis and spondylolisthesis and attempts to present a rational approach to the evaluation and management of this condition in children and adolescents.
Non-accidental injury (NAI) in children includes orthopaedic trauma throughout the skeleton. Fractures with soft-tissue injuries constitute the majority of manifestations of physical abuse in children. Fracture and injury patterns vary with age and development, and NAI is intrinsically related to the mobility of the child. No fracture in isolation is pathognomonic of NAI, but specific abuse-related injuries include multiple fractures, particularly at various stages of healing, metaphyseal corner and bucket-handle fractures and fractures of ribs. Isolated or multiple rib fractures, irrespective of location, have the highest specificity for NAI. Other fractures with a high specificity for abuse include those of the scapula, lateral end of the clavicle, vertebrae and complex skull fractures. Injuries caused by NAI constitute a relatively small proportion of childhood fractures. They may be associated with significant physical and psychological morbidity, with wide- ranging effects from deviations in normal developmental progression to death. Orthopaedic surgeons must systematically assess, recognise and act on the indicators for NAI in conjunction with the paediatric multidisciplinary team.
The operative treatment of displaced fractures of the tibial plateau is challenging. Recent developments in the techniques of internal fixation, including the development of locked plating and minimal invasive techniques have changed the treatment of these fractures. We review current surgical approaches and techniques, improved devices for internal fixation and the clinical outcome after utilisation of new methods for locked plating.
Methicillin-resistant Staphylococcus aureus (MRSA) has become a ubiquitous bacterium in both the hospital and community setting. There are two major subclassifications of MRSA, community-acquired and healthcare-acquired, each with differing pathogenicity and management. MRSA is increasingly responsible for infections in otherwise healthy, active adults. Local outbreaks affect both professional and amateur athletes and there is increasing public awareness of the issue. Health-acquired MRSA has major cost and outcome implications for patients and hospitals. The increasing prevalence and severity of MRSA means that the orthopaedic community should have a basic knowledge of the bacterium, its presentation and options for treatment. This paper examines the evolution of MRSA, analyses the spectrum of diseases produced by this bacterium and presents current prevention and treatment strategies for orthopaedic infections from MRSA.
Articular cartilage repair remains a challenge to surgeons and basic scientists. The field of tissue engineering allows the simultaneous use of material scaffolds, cells and signalling molecules to attempt to modulate the regenerative tissue. This review summarises the research that has been undertaken to date using this approach, with a particular emphasis on those techniques that have been introduced into clinical practice, via in vitro and preclinical studies.
The long-term effects of metal-on-metal arthroplasty are currently under scrutiny because of the potential biological effects of metal wear debris. This review summarises data describing the release, dissemination, uptake, biological activity, and potential toxicity of metal wear debris released from alloys currently used in modern orthopaedics. The introduction of risk assessment for the evaluation of metal alloys and their use in arthroplasty patients is discussed and this should include potential harmful effects on immunity, reproduction, the kidney, developmental toxicity, the nervous system and carcinogenesis.
The menisci of the knee have an important role in load-bearing and shock absorption within the joint. They may also function as secondary stabilisers, have a proprioceptive role, and aid the lubrication and nutrition of the articular cartilage. Complete or partial loss of a meniscus can have damaging effects on a knee, leading to serious long-term sequelae. This paper reviews the consequences of meniscectomy and summarises the body of evidence in the literature regarding those factors most relevant to long-term outcome.