Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 51 - 58
1 Mar 2024
Jenkinson MRJ Meek DRM Tate R Brady A MacMillan S Grant H Currie S

Aims

Elevated blood cobalt levels secondary to metal-on-metal (MoM) hip arthroplasties are a suggested risk factor for developing cardiovascular complications including cardiomyopathy. Clinical studies assessing patients with MoM hips using left ventricular ejection fraction (LVEF) have found conflicting evidence of cobalt-induced cardiomyopathy. Global longitudinal strain (GLS) is an echocardiography measurement known to be more sensitive than LVEF when diagnosing early cardiomyopathies. The extent of cardiovascular injury, as measured by GLS, in patients with elevated blood cobalt levels has not previously been examined.

Methods

A total of 16 patients with documented blood cobalt ion levels above 13 µg/l (13 ppb, 221 nmol/l) were identified from a regional arthroplasty database. They were matched with eight patients awaiting hip arthroplasty. All patients underwent echocardiography, including GLS, investigating potential signs of cardiomyopathy.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1308 - 1313
1 Oct 2011
Hart AJ Sabah SA Bandi AS Maggiore P Tarassoli P Sampson B A. Skinner J

Blood metal ions have been widely used to investigate metal-on-metal hip replacements, but their ability to discriminate between well-functioning and failed hips is not known. The Medicines and Healthcare products Regulatory Agency (MHRA) has suggested a cut-off level of 7 parts per billion (ppb). We performed a pair-matched, case-control study to investigate the sensitivity and specificity of blood metal ion levels for diagnosing failure in 176 patients with a unilateral metal-on-metal hip replacement. We recruited 88 cases with a pre-revision, unexplained failed hip and an equal number of matching controls with a well-functioning hip. We investigated the 7 ppb cut-off level for the maximum of cobalt or chromium and determined optimal mathematical cut-off levels from receiver-operating characteristic curves. The 7 ppb cut-off level for the maximum of cobalt or chromium had a specificity of 89% and sensitivity 52% for detecting a pre-operative unexplained failed metal on metal hip replacement. The optimal cut-off level for the maximum of cobalt or chromium was 4.97 ppb and had sensitivity 63% and specificity 86%. Blood metal ions had good discriminant ability to separate failed from well-functioning hip replacements. The MHRA cut-off level of 7 ppb provides a specific test but has poor sensitivity.


The Bone & Joint Journal
Vol. 101-B, Issue 1_Supple_A | Pages 32 - 40
1 Jan 2019
Hellman MD Ford MC Barrack RL

Aims

Surface replacement arthroplasty (SRA), compared with traditional total hip arthroplasty (THA), is more expensive and carries unique concern related to metal ions production and hypersensitivity. Additionally, SRA is a more demanding procedure with a decreased margin for error compared with THA. To justify its use, SRA must demonstrate comparable component survival and some clinical advantages. We therefore performed a systematic literature review to investigate the differences in complication rates, patient-reported outcomes, stress shielding, and hip biomechanics between SRA and THA.

Materials and Methods

A systematic review of the literature was completed using MEDLINE and EMBASE search engines. Inclusion criteria were level I to level III articles that reported clinical outcomes following primary SRA compared with THA. An initial search yielded 2503 potential articles for inclusion. Exclusion criteria included review articles, level IV or level V evidence, less than one year’s follow-up, and previously reported data. In total, 27 articles with 4182 patients were available to analyze.


The Bone & Joint Journal
Vol. 98-B, Issue 4 | Pages 437 - 441
1 Apr 2016
Middleton S Toms A

We explored the literature surrounding whether allergy and hypersensitivity has a clinical basis for implant selection in total knee arthroplasty (TKA). In error, the terms hypersensitivity and allergy are often used synonymously. Although a relationship is present, we could not find any evidence of implant failure due to allergy. There is however increasing basic science that suggests a link between loosening and metal ion production. This is not an allergic response but is a potential problem. With a lack of evidence logically there can be no justification to use ‘hypoallergenic’ implants in patients who have pre-existing skin sensitivity to the metals used in TKA.

Cite this article: Bone Joint J 2016;98-B:437–41.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 17 - 21
1 Nov 2014
Dunbar MJ Prasad V Weerts B Richardson G

Metal-on-metal resurfacing of the hip (MoMHR) has enjoyed a resurgence in the last decade, but is now again in question as a routine option for osteoarthritis of the hip. Proponents of hip resurfacing suggest that its survival is superior to that of conventional hip replacement (THR), and that hip resurfacing is less invasive, is easier to revise than THR, and provides superior functional outcomes. Our argument serves to illustrate that none of these proposed advantages have been realised and new and unanticipated serious complications, such as pseudotumors, have been associated with the procedure. As such, we feel that the routine use of MoMHR is not justified.

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):17–21.


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1290 - 1297
1 Oct 2014
Grammatopoulos G Pandit HG da Assunção R McLardy-Smith P De Smet KA Gill HS Murray DW

There is great variability in acetabular component orientation following hip replacement. The aims of this study were to compare the component orientation at impaction with the orientation measured on post-operative radiographs and identify factors that influence the difference between the two. A total of 67 hip replacements (52 total hip replacements and 15 hip resurfacings) were prospectively studied. Intra-operatively, the orientation of the acetabular component after impaction relative to the operating table was measured using a validated stereo-photogrammetry protocol. Post-operatively, the radiographic orientation was measured; the mean inclination/anteversion was 43° (sd 6°)/ 19° (sd 7°). A simulated radiographic orientation was calculated based on how the orientation would have appeared had an on-table radiograph been taken intra-operatively. The mean difference between radiographic and intra-operative inclination/anteversion was 5° (sd 5°)/ -8° (sd 8°). The mean difference between simulated radiographic and intra-operative inclination/anteversion, which quantifies the effect of the different way acetabular orientation is measured, was 3°/-6° (sd 2°). The mean difference between radiographic and simulated radiographic orientation inclination/anteversion, which is a manifestation of the change in pelvic position between component impaction and radiograph, was 1°/-2° (sd 7°).

This study demonstrated that in order to achieve a specific radiographic orientation target, surgeons should implant the acetabular component 5° less inclined and 8° more anteverted than their target. Great variability (2 sd about ± 15°) in the post-operative radiographic cup orientation was seen. The two equally contributing causes for this are variability in the orientation at which the cup is implanted, and the change in pelvic position between impaction and post-operative radiograph.

Cite this article: Bone Joint J 2014;96-B:1290–7


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 9 | Pages 1306 - 1311
1 Sep 2010
Patten EW Atwood SA Van Citters DW Jewett BA Pruitt LA Ries MD

Retrieval studies of total hip replacements with highly cross-linked ultra-high-molecular-weight polyethylene liners have shown much less surface damage than with conventional ultra-high-molecular-weight polyethylene liners. A recent revision hip replacement for recurrent dislocation undertaken after only five months revealed a highly cross-linked polyethylene liner with a large area of visible delamination. In order to determine the cause of this unusual surface damage, we analysed the bearing surfaces of the cobalt-chromium femoral head and the acetabular liner with scanning electron microscopy, energy dispersive x-ray spectroscopy and optical profilometry. We concluded that the cobalt-chromium modular femoral head had scraped against the titanium acetabular shell during the course of the dislocations and had not only roughened the surface of the femoral head but also transferred deposits of titanium onto it. The largest deposits were 1.6 μm to 4.3 μm proud of the surrounding surface and could lead to increased stresses in the acetabular liner and therefore cause accelerated wear and damage.

This case illustrates that dislocations can leave titanium deposits on cobalt-chromium femoral heads and that highly cross-linked ultra-high-molecular-weight polyethylene remains susceptible to surface damage.